Answer:
A. 58, 13,-35,-51
Step-by-step explanation:
Start with the greatest positive number, 58. Then use the next greatest positive number, 13. When it comes to negative numbers, the number with the smaller absolute value is greater.
|-35| = 35
|-53| = 53
-35 has a smaller absolute value than -53, so -35 is greater than -53.
Answer: A. 58, 13,-35,-51
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the following Sum to Product Identities:

<u>Proof LHS → RHS</u>





![\text{Sum to Product:}\qquad \dfrac{\cos 10\bigg[2\cos \bigg(\dfrac{15+25}{2}\bigg)\sin \bigg(\dfrac{15-25}{2}\bigg)\bigg]}{\cos 20\bigg[-2\sin \bigg(\dfrac{15+5}{2}\bigg)\sin \bigg(\dfrac{15-5}{2}\bigg)\bigg]}](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cqquad%20%5Cdfrac%7B%5Ccos%2010%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7B15%2B25%7D%7B2%7D%5Cbigg%29%5Csin%20%5Cbigg%28%5Cdfrac%7B15-25%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%7D%7B%5Ccos%2020%5Cbigg%5B-2%5Csin%20%5Cbigg%28%5Cdfrac%7B15%2B5%7D%7B2%7D%5Cbigg%29%5Csin%20%5Cbigg%28%5Cdfrac%7B15-5%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%7D)
![\text{Simplify:}\qquad \qquad \dfrac{\cos 10[2\cos 20\sin (-5)]}{\cos 20[-2\sin 10\sin 5]}\\\\\\.\qquad \qquad \qquad =\dfrac{-2\cos10 \cos 20 \sin 5}{-2\sin 10 \cos 20 \sin 5}\\\\\\.\qquad \qquad \qquad =\dfrac{\cos 10}{\sin 10}\\\\\\.\qquad \qquad \qquad =\cot 10](https://tex.z-dn.net/?f=%5Ctext%7BSimplify%3A%7D%5Cqquad%20%5Cqquad%20%5Cdfrac%7B%5Ccos%2010%5B2%5Ccos%2020%5Csin%20%28-5%29%5D%7D%7B%5Ccos%2020%5B-2%5Csin%2010%5Csin%205%5D%7D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Cdfrac%7B-2%5Ccos10%20%5Ccos%2020%20%5Csin%205%7D%7B-2%5Csin%2010%20%5Ccos%2020%20%5Csin%205%7D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Cdfrac%7B%5Ccos%2010%7D%7B%5Csin%2010%7D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Ccot%2010)
LHS = RHS: cot 10 = cot 10 
Answer:
Infinitely many solutions.
Step-by-step explanation:
Multiply the second equation by -2, then add the equations together
(20x+2y=18)
−2(10x+y=9)
20x+2y=18
−20x−2y=−18
Add these equations to eliminate x
0=0
Infinitely many solutions.
Answer:
<h2> <em><u>384</u></em></h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>, </u></em>
Dimensions of the rectangular prism = 9ft, 12ft and 4ft
<em><u>Therefore</u></em><em><u>, </u></em>
Surface area of the rectangular prism
= 2( lb + bh + lh)




<em><u>Hence</u></em><em><u>,</u></em>
<em><u>Surface</u></em><em><u> </u></em><em><u>area</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>rectangular</u></em><em><u> </u></em><em><u>prism</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>384</u></em><em><u> </u></em><em><u>sq</u></em><em><u>.</u></em><em><u> </u></em><em><u>ft</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>