a. Let
be a random variable representing the weight of a ball bearing selected at random. We're told that
, so

where
. This probability is approximately

b. Let
be a random variable representing the weight of the
-th ball that is selected, and let
be the mean of these 4 weights,

The sum of normally distributed random variables is a random variable that also follows a normal distribution,

so that

Then

c. Same as (b).
9514 1404 393
Answer:
1) f⁻¹(x) = 6 ± 2√(x -1)
3) y = (x +4)² -2
5) y = (x -4)³ -4
Step-by-step explanation:
In general, swap x and y, then solve for y. Quadratics, as in the first problem, do not have an inverse function: the inverse relation is double-valued, unless the domain is restricted. Here, we're just going to consider these to be "solve for ..." problems, without too much concern for domain or range.
__
1) x = f(y)
x = (1/4)(y -6)² +1
4(x -1) = (y-6)² . . . . . . subtract 1, multiply by 4
±2√(x -1) = y -6 . . . . square root
y = 6 ± 2√(x -1) . . . . inverse relation
f⁻¹(x) = 6 ± 2√(x -1) . . . . in functional form
__
3) x = √(y +2) -4
x +4 = √(y +2) . . . . add 4
(x +4)² = y +2 . . . . square both sides
y = (x +4)² -2 . . . . . subtract 2
__
5) x = ∛(y +4) +4
x -4 = ∛(y +4) . . . . . subtract 4
(x -4)³ = y +4 . . . . . cube both sides
y = (x -4)³ -4 . . . . . . subtract 4
0.1 liters = 100 milliliters
Answer:
line mo
Step-by-step explanation:
Because the triangle are congrument
RST and MNO are the triangle
RT is a line in the RST triqangle
it is equal to the MO line in MNO
G(f(12))
f(12) = 9 - 12 = -3
g(-3) = (-3)^2 + 4 = 9 + 4 = 13