Answer:
16 ohms
Explanation:
V=
I
⋅
R
where, V is the net potential difference in the circuit, I is the current in the circuit and R is the net resistance of the circuit.
In this case, V
=
240 volts, I
=
15 amperes.
240
=
15
⋅
R
⇒
R
=
240/
15
=
16 ohms
Answer:
F₂ = -7.3 N
Explanation:
Given that,
The mass of an object, m₁ = 3.7 kg
First force, F₁ = 11 N
The net acceleration of the object is 1 m/s².
We know that,
F₁+F₂ = ma
11+F₂ = (3.7)(1)
F₂ = 3.7-11
F₂ = -7.3 N
so, the other force is 7.3 N and it is acting in west direction.
Answer: A and B
Explanation:
A
The wavelength of both transverse and longitudinal waves is measured parallel to the direction of the travel of the wave.
Because wavelength is the distance between the two successful crest or trough.
B)
Amplitude of longitudinal waves is measured at right angles to the direction of the travel of the wave and represents the maximum distance the molecule has moved from its normal position.
Because amplitude is the measure of maximum displacement from the original position
<span>sound waves are a type of wave sometimes called compression waves, vibrations with enough of an amplitude can compress and decompress the air adjacent to the object causing the waves to form.</span>
Answer:
371.2 mm
Explanation:
The Balmer series of spectral lines is obtained from the formula
1/λ = R(1/2² -1/n²) where λ = wavelength, R = Rydberg's constant = 1.097 × 10⁷ m⁻¹
when n = 15
1/λ = 1.097 × 10⁷ m⁻¹(1/2² -1/15²)
= 1.097 × 10⁷ m⁻¹(1/4 -1/225)
= 1.097 × 10⁷ m⁻¹(0.25 - 0.0044)
= 1.097 × 10⁷ m⁻¹ 0.245556
= 2.693 10⁶ m⁻¹
So,
λ = 1/2.693 10⁶ m⁻¹
= 0.3712 10⁻⁶ m
= 371.2 mm