It is true because a rational function is defined as those functions where the variable is placed in the denominator, which must be restricted, because all denominators cannot be equal to zero, other wise it would be undetermined
Answer:
translation right 10 and up 9
Answer:
Radius: 

Step-by-step explanation:
Given

Solving (a): The radius of the circle
First, we express the equation as:

Where


So, we have:

Divide through by 9

Rewrite as:

Group the expression into 2
![[x^2 + 3x] + [y^2+ \frac{12}{9}y] =- \frac{19}{9}](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%5D%20%2B%20%5By%5E2%2B%20%5Cfrac%7B12%7D%7B9%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D)
![[x^2 + 3x] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%5D%20%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D)
Next, we complete the square on each group.
For ![[x^2 + 3x]](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%5D)
1: Divide the 
2: Take the 
3: Add this 
So, we have:
![[x^2 + 3x] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%5D%20%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D)
![[x^2 + 3x + (\frac{3}{2})^2] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}+ (\frac{3}{2})^2](https://tex.z-dn.net/?f=%5Bx%5E2%20%20%2B%203x%20%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2%5D%20%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2)
Factorize
![[x + \frac{3}{2}]^2+ [y^2+ \frac{4}{3}y] =- \frac{19}{9}+ (\frac{3}{2})^2](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2)
Apply the same to y
![[x + \frac{3}{2}]^2+ [y^2+ \frac{4}{3}y +(\frac{4}{6})^2 ] =- \frac{19}{9}+ (\frac{3}{2})^2 +(\frac{4}{6})^2](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%5E2%2B%20%5Cfrac%7B4%7D%7B3%7Dy%20%2B%28%5Cfrac%7B4%7D%7B6%7D%29%5E2%20%5D%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2%20%2B%28%5Cfrac%7B4%7D%7B6%7D%29%5E2)
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =- \frac{19}{9}+ (\frac{3}{2})^2 +(\frac{4}{6})^2](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%28%5Cfrac%7B3%7D%7B2%7D%29%5E2%20%2B%28%5Cfrac%7B4%7D%7B6%7D%29%5E2)
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =- \frac{19}{9}+ \frac{9}{4} +\frac{16}{36}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D-%20%5Cfrac%7B19%7D%7B9%7D%2B%20%5Cfrac%7B9%7D%7B4%7D%20%2B%5Cfrac%7B16%7D%7B36%7D)
Add the fractions
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{-19 * 4 + 9 * 9 + 16 * 1}{36}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D%5Cfrac%7B-19%20%2A%204%20%2B%209%20%2A%209%20%2B%2016%20%2A%201%7D%7B36%7D)
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{21}{36}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D%5Cfrac%7B21%7D%7B36%7D)
![[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{7}{12}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B4%7D%7B6%7D%5D%5E2%20%3D%5Cfrac%7B7%7D%7B12%7D)
![[x + \frac{3}{2}]^2+ [y +\frac{2}{3}]^2 =\frac{7}{12}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B2%7D%7B3%7D%5D%5E2%20%3D%5Cfrac%7B7%7D%7B12%7D)
Recall that:

By comparison:

Take square roots of both sides

Split

Rationalize





Solving (b): The center
Recall that:

Where


From:
![[x + \frac{3}{2}]^2+ [y +\frac{2}{3}]^2 =\frac{7}{12}](https://tex.z-dn.net/?f=%5Bx%20%2B%20%5Cfrac%7B3%7D%7B2%7D%5D%5E2%2B%20%5By%20%2B%5Cfrac%7B2%7D%7B3%7D%5D%5E2%20%3D%5Cfrac%7B7%7D%7B12%7D)
and 
Solve for h and k
and 
Hence, the center is:
