Answer:
Chocolate Chips cost $2.25 and Walnuts cost $3.25 per pound each
Step-by-step explanatChocion:
Let x = cost of pounds of chocolate chip cookies and y = cost of pounds of walnuts.
From the question, we get 5x+3y = 21 and 2x+6y = 24. To solve the equation, we use substitution. From the first equation, we get y = (21-5x)/3. We substitute the y into the second equation to get 2x + 6(21-5x)/3 = 24. This turns out to be 2x+(42-10x) = 24. Adding like terms you should get 42-8x = 24. Solving for x, x = $2.25 per pound. Plugging this into the first equation, we get 5(2.25)+3y = 21. Solving for y, we get $3.25 per pound of walnuts. If we plug in the numbers into the 2 equations, we will get the right total.
Answer:
the answer and explanation of the question is in the picture
Step-by-step explanation:
hope this helps
please like and Mark as brainliest
We are asked to determine the area of the given figure. To do that we will divide the figure into a square and a triangle. The area of the square is the product of its dimension, therefore, the area is:

The area of the triangle is given by the following formula:

Where "b" is the base and "h" is its height. Replacing the values:

The total area is the sum of both areas:

replacing the areas:
Answer:
hi your question options is not available but attached to the answer is a complete question with the question options that you seek answer to
Answer: v = 5v + 4u + 1.5sin(3t),
Step-by-step explanation:
u" - 5u' - 4u = 1.5sin(3t) where u'(1) = 2.5 u(1) = 1
v represents the "velocity function" i.e v = u'(t)
As v = u'(t)
<em>u' = v</em>
since <em>u' = v </em>
v' = u"
v' = 5u' + 4u + 1.5sin(3t) ( given that u" - 5u' - 4u = 1.5sin(3t) )
= 5v + 4u + 1.5sin(3t) ( noting that v = u' )
so v' = 5v + 4u + 1.5sin(3t)
d/dt
=
+
Given that u(1) = 1 and u'(1) = 2.5
since v = u'
v(1) = 2.5
note: the initial value for the vector valued function is given as
= ![\left[\begin{array}{ccc}1\\2.5\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C2.5%5C%5C%5Cend%7Barray%7D%5Cright%5D)