Factor out the GCF of
21
b
2
c
2
from
63
b
2
c
4
+
42
b
3
c
2
.
Tap for fewer steps...
Factor out the GCF of
21
b
2
c
2
from each term in the polynomial.
Tap for fewer steps...
Factor out the GCF of
21
b
2
c
2
from the expression
63
b
2
c
4
.
21
b
2
c
2
(
3
c
2
)
+
42
b
3
c
2
Factor out the GCF of
21
b
2
c
2
from the expression
42
b
3
c
2
.
21
b
2
c
2
(
3
c
2
)
+
21
b
2
c
2
(
2
b
)
Since all the terms share a common factor of
21
b
2
c
2
, it can be factored out of each term.
21
b
2
c
2
(
3
c
2
+
2
b
)
The greatest common factor
GCF
is the term in front of the factored expression.
21
b
2
c
2
Answer:
d. t distribution with df = 80
Step-by-step explanation:
Assuming this problem:
Consider independent simple random samples that are taken to test the difference between the means of two populations. The variances of the populations are unknown, but are assumed to be equal. The sample sizes of each population are n1 = 37 and n2 = 45. The appropriate distribution to use is the:
a. t distribution with df = 82.
b. t distribution with df = 81.
c. t distribution with df = 41.
d. t distribution with df = 80
Solution to the problem
When we have two independent samples from two normal distributions with equal variances we are assuming that
And the statistic is given by this formula:
Where t follows a t distribution with
degrees of freedom and the pooled variance
is given by this formula:
This last one is an unbiased estimator of the common variance
So on this case the degrees of freedom are given by:

And the best answer is:
d. t distribution with df = 80
Answer:
:-p(x) = x⁴ - ax³ -3x² + 2x + bWe have to find the values of "a" and "b"Given :-(x+1) and (x-1)
Step-by-step explanation:
Answer:
A D E
Step-by-step explanation:
A. In the second problem, the first fraction is less than the second fraction.
D. If you subtract a lesser number from a greater number, the answer is positive.
E. If you subtract a greater number from a lesser number, the answer is negative.