1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
3 years ago
13

What is the transformation of A(4,6) when dilated with a scale factor of 2, using the point (2,1) as the center of dilation?

Mathematics
1 answer:
LUCKY_DIMON [66]3 years ago
4 0

Answer:

Option B

Step-by-step explanation:

Given that the point A(4,6) is dilated with a scale factor of 2

about the point O(2,1) as centre of dilation

This implies that the new point A' will lie on the lineOA with distance equal to double of OA.

Or A will be the mid point of OA' and AA' will have same slope as OA

Considering the above two conditions we find that

Option A cannot be right.

Option B:  Midpoint of OA' = (4,6) matches with given

Slope of AA'=\frac{11-6}{6-4} =\frac{5}{2}\\\\\frac{6-1}{4-2}= \frac{5}{2}\

= slope of OA

Thus option B satisfies both

So answer is B

You might be interested in
Help please I don't remember ​
posledela

Answer: G would be at (1,0)

F (-1,3)

Y (-1,0)

3 0
3 years ago
What best represents an elevation of 0 feet
tamaranim1 [39]
If this is in science terms its a plain if this is in mathematical terms, the answer is the number 0 anything below is negative, anything abouve is pos
5 0
3 years ago
Read 2 more answers
2x + 3 &gt; 13<br> x= 0<br> is this true?<br> O True<br> O False
omeli [17]

False.

Replace x with 0 and solve:

2(0) + 3 = 0+ 3 = 3

3 is not greater than 13 so the answer is false.

5 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
What is 8587 divided by 12
azamat
The answer is <span>715.583333333

</span>
8 0
3 years ago
Other questions:
  • Jonathan places a star on a coordinate plane at (-2, -7). He wants to place another star across the y-axis, 5 points away. Where
    14·1 answer
  • PLEASE HELP I HATE THIS SM I WANNA KMSS
    14·1 answer
  • What is the slope of the line? A. -1 <br> B. 0<br> C. 1 <br> D. 20
    5·2 answers
  • The temperature outside is 15 degrees Fahrenheit . If the temperature drops 20 degrees , will the outside temperature be represe
    7·2 answers
  • What percent of the 2019 world population lives in Canada? Round the percentage to three decimal places.
    13·1 answer
  • What equation represents a number y decreased by 25 is 100
    14·2 answers
  • Between which values does √111 lie
    11·2 answers
  • A zombie apocalypse follows a/an ___________ pattern.Immersive Reader
    10·1 answer
  • What value of x makes x/20 and 3/4 proportionate
    10·2 answers
  • What number can 330 and 180 both be divided by?? Plz help
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!