Answer:
(5,15)
Step-by-step explanation:
We know that 225 = 15a + 10c, and he purchased a total of 20 tickets, so
a + c = 20, using this, we know that c = 20 - a, we can substitute this for c in 225 = 15a + 10c to get:
225 = 15a + 10(20 - a) =
225 = 15a + 200 - 10a
225 = 5a + 200
25 = 5a
a = 5
Now we substitute 5 for a:
225 = 15a + 10c
225 = 15(5) + 10c
225 = 75 + 10c
150 = 10c
c = 15
so a = 5 and c = 15, the solution is (5,15)
P.S. I'm the guy who did your other question
Answer:
<em>you add 40+45</em>
Step-by-step explanation:
<em>40+45=85 </em>
<em>then you subtract 180 - 85 = 95</em>
<em>then divide x into 95 that will give you x=95</em>
<em />
Step-by-step explanation:
here's the solution,
in the given figure , sum of all angles formed with O measures 360°
because, it forms a complete angle
so,
=》mPOQ + mQOR + mROS + mSOT + mTOP = 360°
=》mPOQ + mQOR + mROS + mSOT + mTOP = (90° × 4)
=》mPOQ + mQOR + mROS + mSOT + mTOP = 4 × right angle
(cuz.. right angle = 90°)
Here is a link to help you find the answer:
https://www.khanacademy.org/math/algebra2/rational-expressions-equations-and-functions/simplify-rati...
Hope this helps!
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so
