1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
3 years ago
6

Given: m∠A + m∠B = m∠B + m∠C Prove: m∠C = m∠A

Mathematics
2 answers:
mel-nik [20]3 years ago
8 0

Answer:

See below.

Step-by-step explanation:

m∠A + m∠B = m∠B + m∠C

Use the subtraction property of equality to subtract m<B from both sides of the equation.

m∠A + m∠B - m<B = m∠B - m<B + m∠C

m∠A = m∠C

kirill [66]3 years ago
3 0

Answer:

this is answer

you are welcome

You might be interested in
3-(6x-5)+2= -5(6x+2)<br><br> Solve for x
WARRIOR [948]

Answer:

x

=

−

v

3

24

−

17

24

Step-by-step explanation:

4 0
3 years ago
Are 2/3×3/8 is greater than 3/8 or less than 3/8
MariettaO [177]
No, because 1/4 > 3/8
pls mark me brainliest
7 0
4 years ago
An architect built a scale model of a shopping mall. On the model, a circular fountain is 27 inches tall and 63 inches in diamet
Rasek [7]
The actual fountain is 6 ft tall.....1 ft = 12 inches...so 6 ft = (12 * 6) = 72 inches

72/27 = 2 2/3....u have a scale factor of 2 2/3 (or 8/3)

so the diameter will be : 
63 * 2 2/3 =
63 * 8/3 =
504/3 =
168 inches.....12 inches = 1 ft...so 168 inches = (168/12) = 14 ft <==
8 0
3 years ago
Giving BRAINLIEST for this one . Help needed very badly !!
PSYCHO15rus [73]
Idbdidnfifnfifbfirbidrbirnrirjrirjritjfirjirbrifjfirjririeieiriririrjtjtjt
4 0
3 years ago
Read 2 more answers
BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss
Mars2501 [29]
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
7 0
3 years ago
Other questions:
  • Is y=6x-6 direct proportion
    6·1 answer
  • How many ways are there for her to distribute the books if they are all the same and there is no restriction on the number of bo
    12·1 answer
  • 3step equations 4(x+4)=24
    13·1 answer
  • Find the number of ways each committee can be selected. 8 people from a group of 15?
    11·1 answer
  • Remainder and leftlover is the same?
    13·1 answer
  • In slope intercept form, y = mx + b, what does each variable represent?
    11·1 answer
  • The Knowles/Armitage (KA) group at Merrill Lynch advises clients on how to create a diversified investment portfolio. One of the
    7·2 answers
  • Which rule describes the translation below? A. (x,y) = (x-5,4-3) B. (x,y) → (X+5.7+3) C. (x,y) → (X-3.y-5) D. (x,y) • (x+3,y +5)
    10·1 answer
  • A. Is this a function? Why or why not?
    12·1 answer
  • a computer sales associate makes $74 each day that he works and makes approximately $20 in commission for each computer that he
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!