Answer:
The required probability is 0.0855
Step-by-step explanation:
Consider the provided information.
The daily revenue has mean $7200 and standard deviation $1200.
![\mu_{\bar x}=7200](https://tex.z-dn.net/?f=%5Cmu_%7B%5Cbar%20x%7D%3D7200)
![\sigma=1200](https://tex.z-dn.net/?f=%5Csigma%3D1200)
The daily revenue totals for the next 30 days will be monitored.
![\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Csigma_%7B%5Cbar%20x%7D%3D%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
![\sigma_{\bar x}=\frac{1200}{\sqrt{30}}=219.089](https://tex.z-dn.net/?f=%5Csigma_%7B%5Cbar%20x%7D%3D%5Cfrac%7B1200%7D%7B%5Csqrt%7B30%7D%7D%3D219.089)
As we know ![Z=\frac{\bar x-\mu_{\bar x}}{\sigma_{\bar x}}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Cbar%20x-%5Cmu_%7B%5Cbar%20x%7D%7D%7B%5Csigma_%7B%5Cbar%20x%7D%7D)
Substitute
in above formula.
![Z=\frac{7500-7200}{219.089}=1.3693](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B7500-7200%7D%7B219.089%7D%3D1.3693)
From the standard normal table P( Z >1.3693) = 0.0855
Hence, the required probability is 0.0855