Let
b-----------> the length side of the square box
h------------> the height of the box
SA---------> surface area of the box
we know that
[volume of the box]=b²*h
volume=256 in³
b²*h=256-------> h=256/b²-----> equation 1
surface area of the box=area of the base+perimeter of base*height
area of the base=b²
perimeter of the base=4*b
surface area=b²+(4*b)*h------> SA=b²+4*b*h-----> equation 2
substitute equation 1 in equation 2
SA=b²+4*b*[256/b²]-----> SA=b²+1024/b-----> SA=(b³+1024)/b
the answer is
the formula of the volume of the box is V=b²*h-----> 256=b²*h
the formula of the surface area of the box are
SA=b²+4*b*h
SA=(b³+1024)/b
Answer:
Step-by-step explanation:
figure one
formula length x width x height
plug in 7 x 2 x 3
volume 42 cm^3
figure 2
formula length x width x height
plug in 3 x 2 x 7
volume 42 cm ^3
Answer:
B
Step-by-step explanation:
(x-8)^2=(x-8)(x-8)=x^2-8x-8x+64=x^2-16x+64
Answer:
this should be the graph.
Step-by-step explanation:
I hope this helps.
Answer:
Step-by-step explanation:
Perimeter of rectangle = 208 m
2*(l + w) = 208 {divide both sides by 2}
l +w = 208/2
l +w = 104
l = 104 - w
Area of rectangle = 2415 square meters
l*w = 2415
Substitute l = 104 - w in the above equation,
(104 - w ) *w = 2415
104w - w² = 2415
0 = 2415 - 104w + w²
w² - 104w + 2415 = 0
Sum = -104
Product = 2415
Factors = (-69) , (-35)
w² - 35w - 69w + (-69)*(-35) = 0
w(w - 35) - 69(w - 35) = 0
(w -35)(w -69)
w - 35 = 0 ; w -69 = 0
w = 35 ; w = 69
The dimensions of the building: 35 , 69