Continuous compounding is the mathematical limit that compound interest can reach.
It is the limit of the function A(1 + 1/n) ^ n as n approaches infinity. IN theory interest is added to the initial amount A every infinitesimally small instant.
The limit of (1 + 1/n)^n is the number e ( = 2.718281828 to 9 dec places).
Say we invest $1000 at daily compounding at yearly interest of 2 %. After 1 year the $1000 will increase to:-
1000 ( 1 + 0.02/365)^365 = $1020.20
with continuous compounding this will be
1000 * e^1 = $2718.28
Answer:
10:14
Step-by-step explanation:
194 in radical form is just √194. I don't believe any square roots go into it. Hope that helps. :)
(1.446×10^9) ÷ (<span>6.025×10^4)
= 0.24 x 10^5
= 2.4 x 10^4
answer
</span>2.4 x 10^4
Answer:
y=1/2x+1/2
Step-by-step explanation:
In order to find the slope, you can use rise/run, in this case, the slope is 1/2 and the y-intercept is at (0, 0.5)