What types of problems can be solved using the greatest common factor? What types of problems can be solved using the least common multiple? Complete the explanation.
<span>*** Use the words 'same' and 'different' to complete the following sentences.*** </span>
<span>Problems in which two different amounts must be split into (the same) number of groups can be solved using the GCF. Problems with events that occur on (different) schedules can be solved using the LCM.</span>
Answer:
I think its D
Step-by-step explanation:
Answer:
The value of a₂₇ is 788
Step-by-step explanation:
a₁₉ = 548
a₃₃ = 968
Now,
a₁₉ = 548 can be written as
a + 18d = 548 ...(1) and
a₃₃ = 968 can be written as
a + 32d = 968 ...(2)
Now, from equation (2) we get,
a + 32d = 968
a + 18d + 14d = 968
548 + 14d = 968 (.°. <u>a + 18d = 548</u>)
14d = 968 - 548
14d = 420
d = 420 ÷ 14
d = 30
Now, for the value of a put the value of d = 30 in equation (1)
a + 18d = 548
a + 18(30) = 548
a + 540 = 548
a = 548 - 540
a = 8
Now, For a₂₇
a₂₇ = a + 26d
a₂₇ = 8 + 26(30)
a₂₇ = 8 + 780
a₂₇ = 788
Thus, The value of a₂₇ is 788
<u>-TheUnknownScientist</u>
Answer:
Number of boxes Trisha pack = 18 boxes
Step-by-step explanation:
Given:
Number of boxes Trisha pack = X
Number of bottles in each box = 12
Total number of bottle = 216
Find:
Number of boxes Trisha pack
Computation:
Total number of bottle = Number of boxes Trisha pack x Number of bottles in each box
216 = X × 12
X = 216 / 12
X = 18
Number of boxes Trisha pack = 18 boxes
Answer:
i hope this helps, i got x + 5 ≤ 13 as ur equation
Step-by-step explanation: