Look at one of the vertices of the heptagon where two squares meet. The angles within the squares are both of measure 90 degrees, so together they make up 180 degrees.
All the angles at one vertex must clearly add up to 360 degrees. If the angles from the squares contribute a total of 180 degrees, then the two remaining angles (the interior angle of the heptagon and the marked angle) must also be supplementary and add to 180 degrees. This means we can treat the marked angles as exterior angles to the corresponding interior angle.
Finally, we know that for any convex polygon, the exterior angles (the angles that supplement the interior angles of the polygon) all add to 360 degrees (recall the exterior angle sum theorem). This means all the marked angles sum to 360 degrees as well, so the answer is B.
Because if that point is true than everything on that side of the number line is true. Visa versa.
Answer:
the awnser is 94 because 5×20=100-6=96
Its I=prt
so plug it in
I=300(.06)3 i got .06 because you have 6% you have to move the decimal the left twice 0.06 is what you get
now its basic multiplying
300 times .06 times 3
so it would be 54
I=$54
the balence you get from adding the P to the I so the balence would be 356
Bal=$356
Answer:
There are 1% probability that the last person gets to sit in their assigned seat
Step-by-step explanation:
The probability that the last person gets to sit in their assigned seat, is the same that the probability that not one sit in this seat.
If we use the Combinatorics theory, we know that are 100! possibilities to order the first 99 passenger in the 100 seats.
LIke we one the probability that not one sit in one of the seats, we need the fraction from the total number of possible combinations, of combination that exclude the assigned seat of the last passenger. In other words the amount of combination of 99 passengers in 99 seats: 99!
Now this number of combination of the 99 passenger in the 99 sets, divide for the total number of combination in the 100 setas, is the probability that not one sit in the assigned seat of the last passenger.
P = 99!/100! = 99!/ (100 * 99!) = 1/100
There are 1% probability that the last person gets to sit in their assigned seat