Answer:
5.25
Step-by-step explanation:
If CD is perpendicular to AB, a right angle is formed by the perpendicular lines at the base of the triangle. If we know that AB is 3 we can divided that by two to use half the triangle and create a right trianle with a base of 1.5 (half of 3) a height of rad 3 now all we have to do is use P-Thags to find AC which is the hypotenuse. After doing 1.5 squared + rad 3 squared = ac squared you will get the answer of AC = 5.25
Answer:
J < -7
Explantion:
Rewrite so J is on the left side
-20j > 140
Divide each term by -20 and simplify
j < -7
Answer:
Area of the parallelogram is 96
.
Step-by-step explanation:
A parallelogram is a quadrilateral with parallel and equal length of opposite sides. The diagonals are perpendicular to each other.
Area of a parallelogram is given as,
Area = base x height
Thus for the given parallelogram with base 12 cm and height 8 cm, the area would be;
Area = base x height
= 12 x 8
= 96
Area = 96 
The area of the parallelogram is 96
.
-x - y = 8
2x - y = -1
Ok, we are going to solve this in 2 parts. First we have to solve for one of the variables in one of the equation in terms of the other variable. I like to take the easiest equation first and try to avoid fractions, so let's use the first equation and solve for x.
-x - y = 8 add y to each side
-x = 8 + y divide by -1
x = -8 - y
So now we have a value for x in terms of y that we can use to substitute into the other equation. In the other equation we are going to put -8 - y in place of the x.
2x - y = -1
2(-8 - y) - y = -1 multiply the 2 through the parentheses
-16 - 2y - y = -1 combine like terms
-16 - 3y = -1 add 16 to both sides
-3y = 15 divide each side by -3
y = -5
Now we have a value for y. We need to plug it into either of the original equations then solve for x. I usually choose the most simple equation.
-x - y = 8
-x - (-5) = 8 multiply -1 through the parentheses
-x + 5 = 8 subtract 5 from each side
-x = 3 divide each side by -1
x = -3
So our solution set is
(-3, -5)
That is the point on the grid where the 2 equations are equal, so that is the place where they intersect.