1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artemon [7]
3 years ago
8

Which factor does the width of the peak of a normal curve depend on?

Mathematics
2 answers:
Aleks [24]3 years ago
4 0
<span>The normal curve is described by a bell curved graph. The bell curved graph of a normal distribution depends on two factors: the mean and the standard deviation. The mean identifies the position of the center and the standard deviation determines the height and width of the bell. Therefore, the factor that the width of the peak of the normal curve depends on is the standard deviation.</span>
Marizza181 [45]3 years ago
3 0

Answer:

The mean identifies the position of the center and the standard deviation determines the height and width of the bell.

Step-by-step explanation:

The normal curve is described by a bell curved graph. The bell curved graph of a normal distribution depends on two factors: the mean and the standard deviation.  Therefore, the factor that the width of the peak of the normal curve depends on is the standard deviation.

You might be interested in
Why is it important to learn valid proportions ​
notsponge [240]
<h3>Answer:</h3><h3>If you know one ratio in a proportion , you can use that information to find values in the other equivalent ratio. </h3>

6 0
1 year ago
The graph of a system of parallel lines will have no solutions. (1 point) Select one: a. Always b. Sometimes c. Never
Andreas93 [3]

Answer:

Always

Step-by-step explanation:

They never intersect

8 0
3 years ago
Read 2 more answers
Please Help! This is a trigonometry question.
liraira [26]
\large\begin{array}{l} \textsf{From the picture, we get}\\\\ \mathsf{tan\,\theta=\dfrac{2}{3}}\\\\ \mathsf{\dfrac{sin\,\theta}{cos\,\theta}=\dfrac{2}{3}}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\qquad\mathsf{(i)} \end{array}


\large\begin{array}{l} \textsf{Square both sides of \mathsf{(i)} above:}\\\\ \mathsf{(3\,sin\,\theta)^2=(2\,cos\,\theta)^2}\\\\ \mathsf{9\,sin^2\,\theta=4\,cos^2\,\theta}\qquad\quad\textsf{(but }\mathsf{cos^2\theta=1-sin^2\,\theta}\textsf{)}\\\\ \mathsf{9\,sin^2\,\theta=4\cdot (1-sin^2\,\theta)}\\\\ \mathsf{9\,sin^2\,\theta=4-4\,sin^2\,\theta}\\\\ \mathsf{9\,sin^2\,\theta+4\,sin^2\,\theta=4} \end{array}

\large\begin{array}{l} \mathsf{13\,sin^2\,\theta=4}\\\\ \mathsf{sin^2\,\theta=\dfrac{4}{13}}\\\\ \mathsf{sin\,\theta=\sqrt{\dfrac{4}{13}}}\\\\ \textsf{(we must take the positive square root, because }\theta \textsf{ is an}\\\textsf{acute angle, so its sine is positive)}\\\\ \mathsf{sin\,\theta=\dfrac{2}{\sqrt{13}}} \end{array}

________


\large\begin{array}{l} \textsf{From (i), we find the value of }\mathsf{cos\,\theta:}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{2}\,sin\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\diagup\!\!\!\! 2}\cdot \dfrac{\diagup\!\!\!\! 2}{\sqrt{13}}}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\sqrt{13}}}\\\\ \end{array}

________


\large\begin{array}{l} \textsf{Since sine and cosecant functions are reciprocal, we have}\\\\ \mathsf{sin\,2\theta\cdot csc\,2\theta=1}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{sin\,2\theta}\qquad\quad\textsf{(but }}\mathsf{sin\,2\theta=2\,sin\,\theta\,cos\,\theta}\textsf{)}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\,sin\,\theta\,cos\,\theta}}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\cdot \frac{2}{\sqrt{13}}\cdot \frac{3}{\sqrt{13}}}} \end{array}

\large\begin{array}{l} \mathsf{csc\,2\theta=\dfrac{~~~~1~~~~}{\frac{2\cdot 2\cdot 3}{(\sqrt{13})^2}}}\\\\ \mathsf{csc\,2\theta=\dfrac{~~1~~}{\frac{12}{13}}}\\\\ \boxed{\begin{array}{c}\mathsf{csc\,2\theta=\dfrac{13}{12}} \end{array}}\qquad\checkmark \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2150237


\large\textsf{I hope it helps.}


Tags: <em>trigonometry trig function cosecant csc double angle identity geometry</em>

</span>
8 0
3 years ago
A bag of rice weights 3.18 lbs find its mass in kilograms
Tamiku [17]
\bf \begin{array}{ccll}&#10;lbs&kgs\\&#10;\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\&#10;2.2&1\\&#10;3.18&k&#10;\end{array}\implies \cfrac{2.2}{3.18}=\cfrac{1}{k}\implies k=\cfrac{3.18\cdot 1}{2.2}
3 0
3 years ago
Find the volume of the hemisphere below leave your answers in terms of pi
Ainat [17]

Answer:

volume of the hemisphere

\frac{2}{3}  \times \pi \times  {r}^{3}  \\  \frac{2}{3} \times \pi  \times  1331 \\  = 887.3333333333\pi

7 0
2 years ago
Other questions:
  • Identify the slope and y−intercept of the line with the equation 18x − 6y = 12.
    11·1 answer
  • A midsegment triangle ABC is parallel to a side of triangle ABC what is the missing statement in this proof
    15·1 answer
  • Write and solve a real world problem that involves using the properties of congruent figures to find a missing measure
    10·1 answer
  • A small accounting firm has 4 accountants who each earn
    10·1 answer
  • Keisha and David each found the same value for cosine theta, as shown below, given Sine theta = Negative StartFraction 8 Over 17
    7·2 answers
  • Alyssa flips a fair,two-sided coin four times.What is the probability that the coin lands with heads facing up exactly three tim
    14·1 answer
  • Jane had a rectangular frame 30 inches in length and 24 inches in width. Stan made a similar frame that is smaller in size. Whic
    9·2 answers
  • There are 27 red or blue marbles in a bag. The number of red marbles is five less than three times the number of blue marbles. H
    14·1 answer
  • Help me pls and thanks
    8·2 answers
  • 15.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!