Answer:
A'(-1, -1)
Step-by-step explanation:
Dilation about the origin multiplies each individual coordinate value by the dilation factor.
A' = (1/3)A = (1/3)(-3, -3) = (-1, -1)
Answer: It is only the 3rd equation that is a good example to Jeremy's argument. Others are counter examples to Jeremy's argument.
Step-by-step explanation:
Let us consider the general linear equation
Y = MX + C
On a coordinate plane, a line goes through points (0, negative 1) and (2, 0).
Slope = ( 0 - -1)/( 2- 0) = 1/2
When x = 0, Y = -1
Substitutes both into general linear equation
-1 = 1/2(0) + C
C = -1
The equations for the coordinate is therefore
Y = 1/2X - 1
Let's check the equations one after the other
y = negative one-half x minus 1
Y = -1/2X - 1
y = negative one-half x + 1
Y = -1/2X + 1
y = one-half x minus 1
Y = 1/2X - 1
y = one-half x + 1
Y = 1/2X + 1
It is only the 3rd equation that is a good example to Jeremy's argument. Others are counter examples to Jeremy's argument.
Two solutions exist,
2(x - 1) = 8
2x - 2 = 8
2x = 10
x = 5
&
2(x + 1) = 8
2x + 2 = 8
2x = 6
x = 3
the two solutions are 5 and 3
The question is incomplete.
This is the complete question as I found in internet:
<span>Use substitution to determine which of the following points is a solution to the standard form equation below 5x-2y = 10
these are the points:
</span>
-1,5
1,5
0,-5
0,5
Answer: (0, -5)
Explanation:
point x y 5x - 2y = 10 ?
-1,5 -1 5 5(-1) - 2(5) = - 5 - 10 = - 15 ≠ 10 ⇒ not a solution
1,5 1 5 5(1) - 2(5) = 5 - 10 = 5 ≠ 10 ⇒ not a solution
0,-5 0 -5 0 -2(-5) = 10 ⇒ a solution
0,5 0 5 0 - 2(5) = - 10 ≠ 10 ⇒ not a solution