1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
3 years ago
8

For which value of x must the expression 91x be further simplified? A) 5 B) 13 C) 15 D) 17 E) 19

Mathematics
1 answer:
Naddika [18.5K]3 years ago
6 0

91x = 7*13x

So I'd go with B) 13

You might be interested in
[Help] Classify the following triangle. Check all that apply.
Sonja [21]
The triangle is obtuse since it has an angle more than 90 degrees.
It also has 2 equivalent sides that are represented by the line, meaning it is isosceles.
Therefore,
C. and E. are correct.
Do you mind giving a clickie wickie to the THANKS or MARK AS BRAINLIEST! button if anyone else answers? It would be greatly appreciated. Thank you sooo much!

5 0
3 years ago
It cost $36 per person if 75 people rent the bus. How much will it cost per person if 100 people rent.
motikmotik

find the total cost of the bus by multiplying 75 people by $36:

75 x 36 = $2,700

Now divide the total cost of the bus by 100 people:

2700 / 100 = 27

It will cost $27 per person.

8 0
3 years ago
Can someone tell me if im right? PLEASE DONT JUST SAY YES if you don’t know
tia_tia [17]

Answer: You are incorrect, the slope is correct, but the actual y-intercept is 205 ft.

Then the equation is:

y = (-15 ft/min)*x + 205 ft

Step-by-step explanation:

Ok, let's solve this.

We know that water is drained from a reservoir, let's assume that we can model this situation with a linear relation:

y = a*x + b

Where x is time, y is the height of the water in the reservoir, a is the slope (in this case represents how much changes the height of the water in the reservoir in one unit of time) and b is the initial height of the water in the reservoir.

We know that for a line that passes through the points (x₁, y₁) and (x₂, y₂) the slope is:

a = (y₂ - y₁)/(x₂ - x₁)

For this particular case we know that after 2 minutes the height of the water is 175 ft, then we have the point (2 min, 175 ft)

and after 5 minutes (so 7 minutes in total), the height of the water is 100ft, then: (7 ft, 100ft)

Then the slope of this:

a = (100 ft - 175 ft)/(7 min - 2 min) = (-75ft/5min) = - 15 ft/min

Then our line is something like:

y = (-15ft/min)*x + b

To find the value of b, we can use the fact that when x = 2 min, y = 175 ft

So if we replace these two values in the equation we get:

175ft = (-15 ft/min)*2 min + b

175 ft = -30 ft + b

175 ft + 30 ft = b                  

(here is your problem, it seems like you subtracted instead of adding in this part)

205 ft = b

Then the equation is:

y = (-15 ft/min)*x + 205 ft

So you are incorrect (but only for a little bit), you computed wrong the y-intercept.

3 0
3 years ago
How many quarter hours are in 5 hours?
nikklg [1K]
There is a few ways to get the result.
Lets try this.
First calculate how many minutes are in the 5 hours.
60min*5=300min - in 5 hours
Now, knowing that quarter is 15min we can divide 300 by 15 to get the result, so
300:15=20 - its the result.
6 0
3 years ago
Read 2 more answers
Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po
dybincka [34]

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

6 0
3 years ago
Other questions:
  • What is ( 5+2) + 3 = 5 + (2+3)
    9·2 answers
  • Quadrilateral EFGH was dilated with the origin as the center of dilation to create
    14·1 answer
  • 4
    7·1 answer
  • anne marie needs to rent a car for 9 days to take on vacation. The cost of renting a car is $66 per day, $15.99 for insurance, a
    7·2 answers
  • Need this ASAP PLS SOMEONE
    15·1 answer
  • Each of a regular polygon is 140°,find the number of the sides that ghe polygon has​
    13·2 answers
  • 35 POINTS - question 31 please!
    5·1 answer
  • 1) Two similar cones have radii in the ratio n:m. What is the ratio of their slant heights?
    12·1 answer
  • Ever bought 6 pounds and 7 ounces of pomegranates 5 pounds of melon and 15 ounces of lemon what is the combined weight of the fr
    7·1 answer
  • Scaling Question 2 Which describes the product when two fractions greater than 0 and less than 1 are multiplied? Your answer: Th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!