1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juliette [100K]
4 years ago
11

PLEASE HELP!!!!!! the sum of a number times 10 and 15 is at most -17

Mathematics
1 answer:
Brilliant_brown [7]4 years ago
3 0

Let the number = x

Writing the equation you have:

10x + 15 <= -17

Solve for x

Subtract 15 from both sides:

10x <= -32

Divide both sides by 10:

X <= -32/10

Simplify:

X <= -16/5 as a fraction or -3.2 as a decimal

You might be interested in
What is the answer? Pls help y= x-4;A(5,1)
xenn [34]

Answer:

1=5-4

1=1

you are putting 5 to x and 1 to y

4 0
3 years ago
HELP , this is the work
34kurt

Answer:

The second step is wrong. It should be -6y =12 so y-intercept is -2

Step-by-step explanation:

8 0
2 years ago
6) Supplementary Exercise 5.51
tresset_1 [31]

Answer:

P(X \le 4) = 0.7373

P(x \le 15) = 0.0173

P(x > 20) = 0.4207

P(20\ge x \le 24)= 0.6129

P(x = 24) = 0.0236

P(x = 15) = 1.18\%

Step-by-step explanation:

Given

p = 80\% = 0.8

The question illustrates binomial distribution and will be solved using:

P(X = x) = ^nC_xp^x(1 - p)^{n-x}

Solving (a):

Given

n =5

Required

P(X\ge 4)

This is calculated using

P(X \le 4) = P(x = 4) +P(x=5)

This gives:

P(X \le 4) = ^5C_4 * (0.8)^4*(1 - 0.8)^{5-4} + ^5C_5*0.8^5*(1 - 0.8)^{5-5}

P(X \le 4) = 5 * (0.8)^4*(0.2)^1 + 1*0.8^5*(0.2)^0

P(X \le 4) = 0.4096 + 0.32768

P(X \le 4) = 0.73728

P(X \le 4) = 0.7373 --- approximated

Solving (b):

Given

n =25

i)

Required

P(X\le 15)

This is calculated as:

P(X\le 15) = 1 - P(x>15) --- Complement rule

P(x>15) = P(x=16) + P(x=17) + P(x =18) + P(x = 19) + P(x = 20) + P(x = 21) + P(x = 22) + P(x = 23) + P(x = 24) + P(x = 25)

P(x > 15) = {25}^C_{16} * p^{16}*(1-p)^{25-16} +{25}^C_{17} * p^{17}*(1-p)^{25-17} +{25}^C_{18} * p^{18}*(1-p)^{25-18} +{25}^C_{19} * p^{19}*(1-p)^{25-19} +{25}^C_{20} * p^{20}*(1-p)^{25-20} +{25}^C_{21} * p^{21}*(1-p)^{25-21} +{25}^C_{22} * p^{22}*(1-p)^{25-22} +{25}^C_{23} * p^{23}*(1-p)^{25-23} +{25}^C_{24} * p^{24}*(1-p)^{25-24} +{25}^C_{25} * p^{25}*(1-p)^{25-25}

P(x > 15) = 2042975 * 0.8^{16}*0.2^9 +1081575* 0.8^{17}*0.2^8 +480700 * 0.8^{18}*0.2^7 +177100 * 0.8^{19}*0.2^6 +53130 * 0.8^{20}*0.2^5 +12650 * 0.8^{21}*0.2^4 +2300 * 0.8^{22}*0.2^3 +300 * 0.8^{23}*0.2^2 +25* 0.8^{24}*0.2^1 +1 * 0.8^{25}*0.2^0  

P(x > 15) = 0.98266813045

So:

P(X\le 15) = 1 - P(x>15)

P(x \le 15) = 1 - 0.98266813045

P(x \le 15) = 0.01733186955

P(x \le 15) = 0.0173

ii)

P(x>20)

This is calculated as:

P(x>20) = P(x = 21) + P(x = 22) + P(x = 23) + P(x = 24) + P(x = 25)

P(x > 20) = 12650 * 0.8^{21}*0.2^4 +2300 * 0.8^{22}*0.2^3 +300 * 0.8^{23}*0.2^2 +25* 0.8^{24}*0.2^1 +1 * 0.8^{25}*0.2^0

P(x > 20) = 0.42067430925

P(x > 20) = 0.4207

iii)

P(20\ge x \le 24)

This is calculated as:

P(20\ge x \le 24) = P(x = 20) + P(x = 21) + P(x = 22) + P(x =23) + P(x = 24)

P(20\ge x \le 24)= 53130 * 0.8^{20}*0.2^5 +12650 * 0.8^{21}*0.2^4 +2300 * 0.8^{22}*0.2^3 +300 * 0.8^{23}*0.2^2 +25* 0.8^{24}*0.2^1

P(20\ge x \le 24)= 0.61291151859

P(20\ge x \le 24)= 0.6129

iv)

P(x = 24)

This is calculated as:

P(x = 24) = 25* 0.8^{24}*0.2^1

P(x = 24) = 0.0236

Solving (c):

P(x = 15)

This is calculated as:

P(x = 15) = {25}^C_{15} * 0.8^{15} * 0.2^{10}

P(x = 15) = 3268760 * 0.8^{15} * 0.2^{10}

P(x = 15) = 0.01177694905

P(x = 15) = 0.0118

Express as percentage

P(x = 15) = 1.18\%

The calculated probability (1.18%) is way less than the advocate's claim.

Hence, we do not believe the claim.

5 0
3 years ago
Find the surface area of a square pyramid whose base edge is 6cm and whose slant edge is 5cm
dmitriy555 [2]

Check the picture below.

so let's notice, the base is a 6x6 square, and triangular faces have a base of 6 and an altitude/height of 5.  So we can just get the area of the square and the triangles and sum them up and that's the area of the pyramid.

\bf \stackrel{\textit{triangles' area}}{4\left[ \cfrac{1}{2}(6)(5) \right]}+\stackrel{\textit{square's area}}{(6\cdot 6)}\implies 60+36\implies 96

6 0
3 years ago
Read 2 more answers
What is the product of yx^2 and (6y^2x-yx)
svlad2 [7]

Answer:

6y^3x^3-y^2x^3

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Function g is define by g(x) = 3(x+8). What is the value of g(12)
    7·1 answer
  • What is the value of x in the equation 4(2x + 12) = 0?
    13·1 answer
  • What is the solution to the system of equations? y = x + 3 x = –2
    15·1 answer
  • Jasmine is 5 year younger than he sister age if jasmine sister is 22 years old then how old is jasmine
    9·1 answer
  • What is 35 over x times 100 over 177 (cross multiply)
    5·2 answers
  • NEED HELP! DUE SOON! BRAINLIEST TO THE BEST! 20 PTS What is being done to the variable in the equation = 84? It's being divided
    6·2 answers
  • For accounting purposes, the value of assets (land, buildings, equipment) in a business are depreciated at a set rate per year.
    6·2 answers
  • Jill has 4/5 meter of cloth. She cut it inot eight equal pieces. What is the length of each piece?
    9·1 answer
  • Which one should I pick
    8·1 answer
  • Which equation represents a linear function That is shown on the graph below?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!