Answer:
x= 22.5°
Step-by-step explanation:
∠DEA= ∠BAE (alt. ∠s, DE// AB)
Substitute ∠DEA= 2x:
∠BAE= 2x
∠AEB +∠BEF= 180° (adj. ∠s on a str. line)
Substitute ∠BEF= 4x:
∠AEB +4x= 180°
∠AEB= 180° -4x
∠ABE +∠CBE= 180° (adj. ∠s on a str. line)
Substitute ∠CBE= 6x:
∠ABE +6x= 180°
∠ABE= 180° -6x
∠BAE +∠AEB +∠ABE= 180° (∠ sum of triangle)
2x +180° -4x +180° -6x= 180°
-8x +360°= 180°
8x= 360° -180°
8x= 180°
x= 180° ÷8
x= 22.5°
Step-by-step explanation:
I think it is hilo hawii 480 cm it has the longest cm
Answer:

Step-by-step explanation:



I use the sin rule to find the area
A=(1/2)a*b*sin(∡ab)
1) A=(1/2)*(AB)*(BC)*sin(∡B)
sin(∡B)=[2*A]/[(AB)*(BC)]
we know that
A=5√3
BC=4
AB=5
then
sin(∡B)=[2*5√3]/[(5)*(4)]=10√3/20=√3/2
(∡B)=arc sin (√3/2)= 60°
now i use the the Law of Cosines
c2 = a2 + b2 − 2ab cos(C)
AC²=AB²+BC²-2AB*BC*cos (∡B)
AC²=5²+4²-2*(5)*(4)*cos (60)----------- > 25+16-40*(1/2)=21
AC=√21= 4.58 cms
the answer part 1) is 4.58 cms
2) we know that
a/sinA=b/sin B=c/sinC
and
∡K=α
∡M=β
ME=b
then
b/sin(α)=KE/sin(β)=KM/sin(180-(α+β))
KE=b*sin(β)/sin(α)
A=(1/2)*(ME)*(KE)*sin(180-(α+β))
sin(180-(α+β))=sin(α+β)
A=(1/2)*(b)*(b*sin(β)/sin(α))*sin(α+β)=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
KE/sin(β)=KM/sin(180-(α+β))
KM=(KE/sin(β))*sin(180-(α+β))--------- > KM=(KE/sin(β))*sin(α+β)
the answers part 2) areside KE=b*sin(β)/sin(α)side KM=(KE/sin(β))*sin(α+β)Area A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
The answer is B. -7m+12.
First distribute the -2 to 6m and -5.
5m-2(6m-5)+2
5m+(-2*6m)+(-2*-5)+2
5m+-12m+10+2
After that, combine the like terms.
5m+-12m+10+2
-5m+-12m=-7m
10+2=12
The simplified expression is -7m+12.