Answer:
89°
Step-By-Step Explanation:
<WYT is the angle 4
<UYW is the angle 5
since angle 4 and 5 are on the same line and
anngle 4 is 91°,
180° - 91° = 89°
This shows that <UYW is 89°
<em><u>If this helped, please consider picking this answer as the Brainliest Answer. Thank you!</u></em>
Answer: WVX and TSV
Step-by-step explanation:
The height of the <em>water</em> depth is h = 14 + 6 · sin (π · t/6 + π/2), where t is in hours, and the height of the Ferris wheel is h = 21 + 19 · sin (π · t/20 - π/2), where t is in seconds. Please see the image to see the figures.
<h3>How to derive equations for periodical changes in time</h3>
According to the two cases described in the statement, we have clear example of <em>sinusoidal</em> model for the height as a function of time. In this case, we can make use of the following equation:
h = a + A · sin (2π · t/T + B) (1)
Where:
- a - Initial position, in meters.
- A - Amplitude, in meters.
- t - Time, in hours or seconds.
- T - Period, in hours or seconds.
- B - Phase, in radians.
Now we proceed to derive the equations for each case:
Water depth (u = 20 m, l = 8 m, a = 14 m, T = 12 h):
A = (20 m - 8 m)/2
A = 6 m
a = 14 m
Phase
20 = 14 + 6 · sin B
6 = 6 · sin B
sin B = 1
B = π/2
h = 14 + 6 · sin (π · t/6 + π/2), where t is in hours.
Ferris wheel (u = 40 m, l = 2 m, a = 21 m, T = 40 s):
A = (40 m - 2 m)/2
A = 19 m
a = 21 m
Phase
2 = 21 + 19 · sin B
- 19 = 19 · sin B
sin B = - 1
B = - π/2
h = 21 + 19 · sin (π · t/20 - π/2), where t is in seconds.
Lastly, we proceed to graph each case in the figures attached below.
To learn more on sinusoidal models: brainly.com/question/12060967
#SPJ1
Answer:
Step-by-step explanation:
A linear transformation must satisfy the following properties.
- T(0) = 0.
- For vector a,b then T(a+b) = T(a) + T(b).
- For a vector a and a scalar r, it must happen that T(ra) = rT(a)
In this case we have that T(a,b,c) = (a,0,c).
Note that T(0) = T(0,0,0) = (0,0,0) = 0. So, the first property holds.
Let
. Then

So the second property holds.
Finally, let r be a scalar and let
. Then

So, the three properties hold, and therefore, T is a linear transformation.