Answer:
Let the. length of 3rd side of a ∆ be x.
x>(8–6) cms. and. x <(8+6) cms.
or. x > 2 cms. and. x < 14 cms
or. 2 cms < x < 14 cm
Step-by-step explanation:
find the answer here
Answer:
A. 21
B. 19
Step-by-step explanation:
Happy to help!
:D
(2x-3y)^5
(2x-3y)(2x-3y)(2x-3y)(2x-3y)(2x-3y)
1st and 2nd power :
(2x-3y)(2x-3y) = 2x(2x-3y)-3y(2x-3y) = 4x² - 6xy - 6xy + 9y²
= 4x² - 12xy + 9y²
3rd power:
(2x-3y)(4x² - 12xy + 9y²) = 2x(4x² - 12xy + 9y²) - 3y(4x² - 12xy + 9y²)
8x³ - 24x²y + 18xy² - 12x²y +36xy² - 27y³
8x³ - 24x²y - 12x²y + 18xy² + 36xy² - 27y³
8x³ - 36x²y + 54xy² - 27y³
4th power
(2x-3y)(8x³ - 36x²y + 54xy² - 27y³) = 2x(8x³ - 36x²y + 54xy² - 27y³) -3y(8x³ - 36x²y + 54xy² - 27y³) = 16x^4 - 72x³y + 108x²y² - 54xy³ - 24x³y + 108x²y² - 162xy³ + 81y^4
16x^4 - 72x³y - 24x³y + 108x²y² + 108x²y² - 54xy³ - 162xy³ + 81y^4
16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4
5th power
(2x-3y)(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
2x(</span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4) - 3y(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
= 32x^5 - 192x^4y + 432x</span>³y² - 432x²y³ + 162xy^4 - 48x^4y + 288x³y² - 648x²y³ + 648xy^4 - 243y^5
32x^5 - 192x^4y -48x^4y + 432x³y² + 288x³y² - 432x²y³ - 648x²y³ + 162xy^4 + 648xy^4 - 243y^5
32x^5 - 240x^4y + 720x³y² - 1,080x²y³ + 810xy^4 - 243y^5
Answer:
your answer should be 7 or 7.5 minutes.
Step-by-step explanation:
Hope this helps and have a great day
Step-by-step explanation:
4, 6, x, y, 10 ? emm.. i think 4, 6, x, y, 12 :)
- U1 = 4
- U2 = 4 + 2 = 6
- U3 ( x ) = 6 + 2 = <u>8</u>
- U4 ( y ) = 8 + 2 = <u>1</u><u>0</u>
- U5 = 10 + 2 = <u>1</u><u>2</u>
[ Valid ]
I hope this help u... ^-^
#mathisfun