This is another one for my "impossible math question" file. All of the answer choices are wrong. (None applies.)
According to the problem statement, the length you have marked "x" in the diagram is 15 inches. If the side length of one of the pavers is "s", then the Pythagorean theorem tells us
s² + (2s)² = 15²
5s² = 225
s² = 225/5 = 45 . . . . . . the area of one square is 45 in² (not 225 in²)
Then
s = √45 = 3√5 . . . . . . . the length of one side is not 5√3
so the perimeter is
p = 4s = 4·3√5 in = 12√5 in ≈ 26.83 in . . . . not 75 inches.
The area of the 6-block L-shaped path is
total area = 6s² = 6·45 in² = 270 in² . . . . not 450 in²
And the total perimeter is 14 sides, so is
total perimeter = 14s = 14·3√5 in = 42√5 in . . . . not 60√3 in
_____
In cases like this where the answer key is incorrect, you might try asking your teacher show the class how to work the problem.
Answer:
V=a3=33=27
Step-by-step explanation:
sorry if its wrong
Answer:471.2
Step-by-step explanation:
V=pie X radius(5)^2 X height(6)
Answer:
The distribution of the sampled means becomes normally distributed (bell shaped) as the sample size increases.
Explanation:
According to the Central Limit Theorem, if the mean values for increasing sample sizes are obtained, the distribution of sample means will be normally distributed, even if the individual samples do not have normal distributions.
Typically, sample sizes of 30 or greater are recommended.
Given:
The graph of a parabola.
To find:
The equation for the parabola.
Solution:
The vertex form of a parabola is:
...(i)
Where, a is a constant and (h,k) is the vertex.
From the given graph it is clear that the vertex of the parabola is at point (-1,6). So, h=-1 and k=6.
Putting h=-1 and k=6 in (i), we get
...(ii)
The y-intercept of the graph is at point (0,3). Putting x=0 and y=3 in (ii), we get
Putting a=-3 in (ii), we get
Therefore, the equation of the parabola is .