1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
13

What is a irrational number between 12.1 and 12.2

Mathematics
2 answers:
GREYUIT [131]3 years ago
7 0
12.123456234576899122567536492848...
sergij07 [2.7K]3 years ago
7 0

Answer:

The required irrational number between 12.1 and 12.2 is 12.1243536859.....

Step-by-step explanation:

To find : What is a irrational number between 12.1 and 12.2 ?

Solution :

An irrational number is defined as the number written in \frac{p}{q} form or in proper fraction where p and q are integers and q is non-zero.

An irrational numbers are non-terminating and non-repeating.

So, An irrational number between 12.1 and 12.2 is any number which is non-terminating and non-repeating there are so many in between.

Let's take, 12.1243536859......

Therefore, The required irrational number between 12.1 and 12.2 is 12.1243536859......

You might be interested in
Can anyone give me a geometric sequence will give brainlinest and need sequence of 6
snow_lady [41]

Answer:

3, 6, 9, 12, 15, 18

Step-by-step explanation:

If you count by threes you can make a Geometric Sequence of 6.

Final answer: 3, 6, 9, 12, 15, 18.

3 0
3 years ago
40 50 60 70 80 90 100 110 120 130
RideAnS [48]

Answer:

um no problem with this is easy

5 0
3 years ago
$834, 3%, 15 months ?
NISA [10]

Answer: 25.02 x 15= 375.30

Step-by-step explanation:

3 0
2 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
A catering service offers 5 appetizers,4 main courses, and 8 desserts. A customer is to select 4 appetizers,2 main courses,and 3
Alisiya [41]

Answer:

468 ways

Step-by-step explanation:

Given: A catering service offers 5 appetizers, 4 main courses, and 8 desserts

To find: number of ways a customer is to select 4 appetizers, 2 main courses,and 3 desserts.

Solution:

A permutation is an arrangement of elements such that order of elements matters and repetition is not allowed.

Number of appetizers = 5

Number of main courses = 4

Number of desserts = 8

Number of ways of choosing k terms from n terms = nPk=\frac{n!}{(n-k)!}

Number of ways a customer is to select 4 appetizers, 2 main courses,and 3 desserts =  5P4+4P2+8P3

=\frac{5!}{(5-4)!}+\frac{4!}{(4-2)!}+\frac{81}{(8-3)!}\\=5!+\frac{4!}{2!}+\frac{8!}{5!}\\=5!+(4\times 3)+(8\times 7\times 6)\\=120+12+336\\=468

So, this can be done in 468 ways.

7 0
2 years ago
Other questions:
  • To choose a mascot for a new middle school, 8th-grade students were polled, and their top choice was selected as the mascot. Was
    8·2 answers
  • The sum of two numbers is 70.<br> One number is 10 more the twice the other number.
    5·1 answer
  • WHICH STATEMENT IS TRUE ABOUT THE PRODUCT OF 5/12 X 7
    6·1 answer
  • What is the quotient StartFraction 15 p Superscript negative 4 Baseline q Superscript negative 6 Baseline Over negative 20 p Sup
    8·2 answers
  • 14. Find the coordinates of the circumcenter for ∆DEF with coordinates D(1,3) E (8,3) and F(1,-5). Show your work.
    10·2 answers
  • How do I work out A &amp; B ?
    15·2 answers
  • The graph shows the motion of two cars starting at different places on a highway. Their speeds can be compared by comparing the
    12·1 answer
  • Order the numbers from least to greatest.
    15·2 answers
  • Which graph represents a function
    10·1 answer
  • A rental company charges costumers a 14.75 fee plus $0.15 per smile to rent a moving van after returning the moving van a custom
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!