Answer:
146.6 g
Explanation:
First we<u> calculate how many KNO₃ moles are there in 7.25 L of a 0.200 M solution</u>, using the <em>definition of molarity</em>:
- Molarity = moles / liters
- Molarity * liters = moles
- 0.200 M * 7.25 L = 1.45 moles
Then we<u> convert 1.45 moles of KNO₃ into grams</u>, using its <em>molar mass</em>:
- 1.45 mol * 101.103 g/mol = 146.6 g
Answer: The simplest way to use the periodic table to identify an element is by looking for the element's name or elemental symbol. The periodic table can be used to identify an element by looking for the element's atomic number. The atomic number of an element is the number of protons found within the atoms of that element.
Answer:
Actinium is a chemical element with the symbol Ac and atomic number 89. A soft, silvery-white radioactive metal, actinium reacts rapidly with oxygen and moisture in air forming a white coating of actinium oxide that prevents further oxidation.
Answer:
A. 0.0655 mol/L.
B. PbBr2.
C. Pb2+(aq) + Br- --> PbBr2(s).
Explanation:
Balanced equation of the reaction:
Pb(NO3)2(aq) + 2NaBr(aq) --> PbBr2(s) + 2NaNO3(aq)
A.
Number of moles
PbBr2
Molar mass = 207 + (80*2)
= 367 g/mol.
Moles = mass/molar mass
= 3.006/367
= 0.00819 mol.
Since 2 moles of NaBr reacted to form 1 mole of PbBr2. Therefore, moles of NaBr = 2*0.00819
= 0.01638 moles of NaBr.
Since, the ionic equation is
NaBr(aq) --> Na+(aq) + Br-(aq)
Since 1 moles of NaBr dissociation in solution to give 1 mole of Br-
Therefore, molar concentration of Br-
= 0.0164/0.25 L
= 0.0655 mol/L.
B.
PbBr2
C.
Pb(NO3)2(aq)--> Pb2+(aq) + 2No3^2-(aq)
2NaBr(aq) --> 2Na+(aq) + 2Br-(aq)
Net ionic equation:
Pb2+(aq) + 2Br- --> PbBr2(s)
Answer:
0.01931034
Explanation:
Steps:
ρ = m/v
=
28 gram
1.45 cubic meter
= 19.310344827586 gram/cubic meter
= 0.019310344827586 kilogram/cubic meter