There are several differences between<span> a </span>physical and chemical change<span> in matter or substances. A </span>physical change<span> in a substance doesn't </span>change<span> what the substance is. In a </span>chemical change<span> where there is a </span>chemical<span> reaction, a new substance is formed and energy is either given off or absorbed.</span>
Answer:
pH=2.34
Explanation:
HBr -> H + Br
The dissociation it's complete, for that reason the concentration of the products is the same of HBr
[H+]=[Br-]=0.00234 M
pH= - log (0.00234)=2.34
Answer:
2.7 × 10⁻⁴ bar
Explanation:
Let's consider the following reaction at equilibrium.
SbCl₅(g) ⇄ SbCl₃(g) + Cl₂(g)
The pressure equilibrium constant (Kp) is 3.5 × 10⁻⁴. We can use these data and the partial pressures at equilibrium of SbCl₅ and SbCl₃, to find the partial pressure at equilibrium of Cl₂.
Kp = pSbCl₃ × pCl₂ / pSbCl₅
pCl₂ = Kp × pSbCl₅ / pSbCl₃
pCl₂ = 3.5 × 10⁻⁴ × 0.17 / 0.22
pCl₂ = 2.7 × 10⁻⁴ bar
<u>Answer:</u> The atomic mass of these species is different and atomic number remains same.
<u>Explanation:</u>
Isotopes are the chemical species of the same element having different number of neutrons.
- Atomic number is equal to the number of protons or electrons present in that element.
Atomic Number = Number of electrons = Number of protons
- Atomic mass is defined as the sum of number of protons and neutrons contained in an atom.
Atomic Mass = Number of protons + Number of neutrons
For isotopes, as the number of neutrons differ, the atomic mass also differs.
For Example: Carbon has 3 naturally occurring isotopes:
. The atomic number remains the same but atomic mass differs.
Hence, for isotopes, the atomic mass of these species is different and atomic number remains same.