Answer:

Explanation:
= Initial pressure = 931 torr = 
= Final pressure = 113 kPa
= Initial volume = 350 mL
= Final volume
From the Boyle's law we have

The volume the gas would occupy is
.
Answer:
the heat rate required to cool down the gas from 535°C until 215°C is -2.5 kW.
Explanation:
assuming ideal gas behaviour:
PV=nRT
therefore
P= 109 Kpa= 1.07575 atm
V= 67 m3/hr = 18.6111 L/s
T= 215 °C = 488 K
R = 0.082 atm L /mol K
n = PV/RT = 109 Kpa = 1.07575 atm * 18.611 L/s /(0.082 atm L/mol K * 488 K)
n= 0.5 mol/s
since the changes in kinetic and potencial energy are negligible, the heat required is equal to the enthalpy change of the gas:
Q= n* Δh = 0.5 mol/s * (- 5 kJ/mol) =2.5 kW
Hit
Or
Miss
I
Guess
They
Never
Miss
Huh
Answer:-
molecules.
Solution:- The grams of tetrabromomethane are given and it asks to calculate the number of molecules.
It is a two step unit conversion problem. In the first step, grams are converted to moles on dividing the grams by molar mass.
In second step, the moles are converted to molecules on multiplying by Avogadro number.
Molar mass of
= 12+4(79.9) = 331.6 g per mol
let's make the set up using dimensional analysis:

=
molecules
So, there will be
molecules in 250 grams of
.
<u>Answer</u>:
By tracking oxidation numbers we can identify the number electron in the atom
<u>Explanation</u>:
Tracking of electrons helps us to know when and how many electrons get transferred from one atom to other atom . Oxidation referred as the “loss of one or more electrons” by an atom. When the oxidation number of an element increases, there is a loss of electrons and that element is being oxidized. Oxidation numbers are usually written with the sign (+plus or −minus) followed by the magnitude, which is the opposite of charges on ions. In their elemental stage oxidation number of an atom is zero.