Answer: just get gud at math lol
Step-by-step explanation: no
Answer:
60% of the band won a medal.
Step-by-step explanation:
=24/40*100
=2400/40
=60%
Therefore, 60% band won a medal.
13 = 65%
1% = 13 divided by 65 = 0.2
100% = 0.2 x 100 = 20
There are 20 candies in total^^
Let P be Brandon's starting point and Q be the point directly across the river from P.
<span>Now let R be the point where Brandon swims to on the opposite shore, and let </span>
<span>QR = x. Then he will swim a distance of sqrt(50^2 + x^2) meters and then run </span>
<span>a distance of (300 - x) meters. Since time = distance/speed, the time of travel T is </span>
<span>T = (1/2)*sqrt(2500 + x^2) + (1/6)*(300 - x). Now differentiate with respect to x: </span>
<span>dT/dx = (1/4)*(2500 + x^2)^(-1/2) *(2x) - (1/6). Now to find the critical points set </span>
<span>dT/dx = 0, which will be the case when </span>
<span>(x/2) / sqrt(2500 + x^2) = 1/6 ----> </span>
<span>3x = sqrt(2500 + x^2) ----> </span>
<span>9x^2 = 2500 + x^2 ----> 8x^2 = 2500 ---> x^2 = 625/2 ---> x = (25/2)*sqrt(2) m, </span>
<span>which is about 17.7 m downstream from Q. </span>
<span>Now d/dx(dT/dx) = 1250/(2500 + x^2) > 0 for x = 17.7, so by the second derivative </span>
<span>test the time of travel, T, is minimized at x = (25/2)*sqrt(2) m. So to find the </span>
<span>minimum travel time just plug this value of x into to equation for T: </span>
<span>T(x) = (1/2)*sqrt(2500 + x^2) + (1/6)*(300 - x) ----> </span>
<span>T((25/2)*sqrt(2)) = (1/2)*(sqrt(2500 + (625/2)) + (1/6)*(300 - (25/2)*sqrt(2)) = 73.57 s.</span><span>
</span><span>
</span><span>
</span><span>
</span><span>mind blown</span>
Answer:
0.191 is the probability that a group of 12 randomly selected applicants would have a mean SAT score that is greater than 525 but below the current admission standard of 584.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 500
Standard Deviation, σ = 100
n = 12
We are given that the distribution of SAT score is a bell shaped distribution that is a normal distribution.
Formula:

P(greater than 525 but 584)
Standard error due to sampling =


0.191 is the probability that a group of 12 randomly selected applicants would have a mean SAT score that is greater than 525 but below the current admission standard of 584.