X - 2y = 3
<span>4x^2 - 5xy + 6y = 3
lets solve for x the first and substitute in the second:
x = 3 + 2y
4(</span>3 + 2y)^2 - 5(3 + 2y)y + 6y = 3
4(9 + 12y + 4y^2) - 15y - 10y^2 = 3
36 + 48y +16y^2<span> - 15y - </span><span>10y^2 = 3
6y^2 + 33y + 33 = 0
we can solve using the general quadratic formula:
y = (-33 +- </span>√(33^2 - 4*6*33)<span>)/12
</span>y = (-33 +- √(297)<span>)/12
</span>so there are 2 solutions for y:
y1 = (-33 + √(297)<span>)/12
</span>y2 = (-33 - √(297)<span>)/12
</span>pick one and then substitute the y value in the first equation to find x
Answer:
y=4x+.0004
Step-by-step explanation:
y=4(x+1)^-4
distribute your parenthesis
y=4x+4^-4
do your exponents
y=4x+.004
and thats as far as the problem can be simplified
hope this helps
Answer:
1.Three and Nine Hundredths 2. 3 9/100 3. 390%
Step-by-step explanation:
There are
ways of picking 2 of the 10 available positions for a 0. 8 positions remain.
There are
ways of picking 3 of the 8 available positions for a 1. 5 positions remain, but we're filling all of them with 2s, and there's
way of doing that.
So we have

The last expression has a more compact form in terms of the so-called multinomial coefficient,

(√3 - <em>i </em>) / (√3 + <em>i</em> ) × (√3 - <em>i</em> ) / (√3 - <em>i</em> ) = (√3 - <em>i</em> )² / ((√3)² - <em>i</em> ²)
… = ((√3)² - 2√3 <em>i</em> + <em>i</em> ²) / (3 - <em>i</em> ²)
… = (3 - 2√3 <em>i</em> - 1) / (3 - (-1))
… = (2 - 2√3 <em>i</em> ) / 4
… = 1/2 - √3/2 <em>i</em>
… = √((1/2)² + (-√3/2)²) exp(<em>i</em> arctan((-√3/2)/(1/2))
… = exp(<em>i</em> arctan(-√3))
… = exp(-<em>i</em> arctan(√3))
… = exp(-<em>iπ</em>/3)
By DeMoivre's theorem,
[(√3 - <em>i </em>) / (√3 + <em>i</em> )]⁶ = exp(-6<em>iπ</em>/3) = exp(-2<em>iπ</em>) = 1