Answer:
v(0) = 32,000 . . . dollars
v(13) = 16,427 . . . dollars
Step-by-step explanation:
The initial value is the value of the function for t=0. Put that into the formula and evaluate.
v(0) = 32,000(0.95^0) = 32,000 . . . . dollars
__
The value after 13 years is the function value for t=13. Put that into the formula and evaluate.
v(13) = 32,000(0.95^13) ≈ 32,000·0.513342 ≈ 16,427 . . . . dollars
The answer is 81/8
Alternative Forms:
10 1/8 or 10.125
It should be eight if I remember correctly
Answer:

Step-by-step explanation:
Let us solve

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
<em>Please</em><em> </em><em>let</em><em> </em><em>me</em><em> </em><em>know</em><em> </em><em>if</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>another</em><em> </em><em>questions</em><em> </em><em>:-)</em>