There are 6 handshakes between four people in the room.
<h3>Further explanation</h3>
The probability of an event is defined as the possibility of an event occurring against sample space.
![\large { \boxed {P(A) = \frac{\text{Number of Favorable Outcomes to A}}{\text {Total Number of Outcomes}} } }](https://tex.z-dn.net/?f=%5Clarge%20%7B%20%5Cboxed%20%7BP%28A%29%20%3D%20%5Cfrac%7B%5Ctext%7BNumber%20of%20Favorable%20Outcomes%20to%20A%7D%7D%7B%5Ctext%20%7BTotal%20Number%20of%20Outcomes%7D%7D%20%7D%20%7D)
<h2>Permutation ( Arrangement )</h2>
Permutation is the number of ways to arrange objects.
![\large {\boxed {^nP_r = \frac{n!}{(n - r)!} } }](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5EnP_r%20%3D%20%5Cfrac%7Bn%21%7D%7B%28n%20-%20r%29%21%7D%20%7D%20%7D)
<h2>Combination ( Selection )</h2>
Combination is the number of ways to select objects.
![\large {\boxed {^nC_r = \frac{n!}{r! (n - r)!} } }](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5EnC_r%20%3D%20%5Cfrac%7Bn%21%7D%7Br%21%20%28n%20-%20r%29%21%7D%20%7D%20%7D)
Let us tackle the problem.
This problem is about Combination.
If there are 4 people in a room , then the number of handshaking between 2 people is analogy as selecting 2 people from 4 people available. We will use combination formula in this problem.
![^4C_2 = \frac{4!}{2! (4-2)!}](https://tex.z-dn.net/?f=%5E4C_2%20%3D%20%5Cfrac%7B4%21%7D%7B2%21%20%284-2%29%21%7D)
![^4C_2 = \frac{4!}{2! 2!}](https://tex.z-dn.net/?f=%5E4C_2%20%3D%20%5Cfrac%7B4%21%7D%7B2%21%202%21%7D)
![^4C_2 = \frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}](https://tex.z-dn.net/?f=%5E4C_2%20%3D%20%5Cfrac%7B4%20%5Ctimes%203%20%5Ctimes%202%20%5Ctimes%201%7D%7B2%20%5Ctimes%201%20%5Ctimes%202%20%5Ctimes%201%7D)
![^4C_2 = \frac{ 24 }{4}](https://tex.z-dn.net/?f=%5E4C_2%20%3D%20%5Cfrac%7B%2024%20%7D%7B4%7D)
![^4C_2 = \boxed{6}](https://tex.z-dn.net/?f=%5E4C_2%20%3D%20%5Cboxed%7B6%7D)
<h3>Learn more</h3>
<h3>Answer details</h3>
Grade: High School
Subject: Mathematics
Chapter: Probability
Keywords: Probability , Sample , Space , Six , Dice , Die , Binomial , Distribution , Mean , Variance , Standard Deviation