1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill115 [55]
3 years ago
15

The moats separating people from the animals are 5 m wide for lions and 4 m wide for the elephants. If the lion’s moat is 4 m de

ep, how deep should the elephants’ moat be?
Mathematics
1 answer:
ZanzabumX [31]3 years ago
3 0

Answer:

<em>The elephants' moat should be 3.2 meters deep.</em>

Step-by-step explanation:

Suppose, the depth of the elephants' moat is  x meter.

Width of the lions' moat is 5 meter and width of the elephants' moat is 4 meter.

Given that, the lion’s moat is 4 meter deep.

So, <u>according to the ratio of width and depth</u>, the equation will be.......

\frac{5}{4}=\frac{4}{x}\\ \\ 5x=4*4\\ \\ 5x=16\\ \\ x=\frac{16}{5}=3.2

Thus, the elephants' moat should be 3.2 meters deep.

You might be interested in
Mason wants to play with Maliyah's Doll House, but first he needs to stop at the clubhouse. If all
denis23 [38]

Answer:6,8,14

Step-by-step explanation:

Just did it on math nation

6 0
3 years ago
Read 2 more answers
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
A little help on this question? Picture is below. (For 20 points.)
Elena L [17]

Answer:

a) 3 3/5

b) 18/5

c) 3.6

Hope this helps!

3 0
3 years ago
Read 2 more answers
*****50 POINTSSSS*****
defon

Answer:

<h3>Given</h3>
  • m∠REG = 78°
  • mAR = 46°
  • ER ≅ GA
<h3>Solution</h3>
  • m∠GAR = 180° - m∠REG = 180° - 78° = 102° (supplementary angles sum to 180°)
  • m∠TAR = 1/2mAR = 1/2(46°) = 23°   (tangent chord angle is half the size of intercepted arc)
  • m∠GAN = 180° - (m∠TAR + m∠GAR) = 180° - (23° + 102°) = 55° (straight angle is 180°)
  • mAG = 2m∠GAN = 2(55°) = 110°
  • mRE = mAG = 110° (as ER ≅ GA)
  • mGE = 360° - (mAG + mAR + mRE) = 360° - (110° + 46° + 110°) = 94° (full circle is 360°)
6 0
2 years ago
Fine the equation, in standard form, of the line passing through the points (3,-4) and (5,1)
Talja [164]

The point-slope form:

y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}

We have the points (3, -4) and (5, 1). Substitute:

m=\dfrac{1-(-4)}{5-3}=\dfrac{5}{2}\\\\y-(-4)=\dfrac{5}{2}(x-3)

The standard form: Ax+By=C

y+4=\dfrac{5}{2}(x-3)           <em>multiply both sides by 2</em>

2y+8=5(x+3)           <em>use distributive property</em>

2y+8=5x+15            <em>subtract 2y from both sides</em>

8=5x-2y+15          <em>subtract 15 from both sides</em>

-7=5x-2y

<h3>Answer: 5x - 2y = -7</h3>
5 0
3 years ago
Other questions:
  • Add parentheses to make this equation true 4+8-2×3-7=15
    10·2 answers
  • Approximately how many times greater is 1.2×103 than 4×10−1 ?
    12·1 answer
  • The length of a rectangular field is represented by the expression14x-3x^2+2y. The width of the field is represented by the expr
    13·1 answer
  • PLEASE HELP ME ASAP!!! I do not get how to do this.. (Just the ODDS.)
    11·1 answer
  • (2x10^3)x(4x10^2) how do you do it help!
    5·1 answer
  • A wire is tied from the top of one tower to the top of another. The angle of depression from the top
    8·1 answer
  • Graph the system below and write its solution. <br> 3x+y=6<br> y=-1/3x-2
    7·1 answer
  • Find the range of the function f(x)=2x+7 for the domain -2,3,8
    15·1 answer
  • HELPPP PLEASE ANSWER FAST CLASS IS ALMOST OVER!!!
    14·1 answer
  • The height of a triangle is 8 m less than the base. The area is 10 m2. Find the height and base.​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!