According to my brain, Maddy picked 6 cucumbers.
1 = 4 angles
2 = perpendicular
Hope that helped ;)
Answer:
t(g)= -4g + 20
Step-by-step explanation:
James is playing his favorite game at the arcade. After playing the game 3 times, he has 8 tokens remaining. He initially had 20 tokens, and the game costs the same number of tokens each time. The number tt of tokens James has is a function of gg, the number of games he plays
Solution
Let
g=No. of games James plays
t= No. of tokens James has.
Find the slope using
y=mx + b
Where,
m = Slope of line,
b = y-intercept.
Before James started playing the games, he has a total of 20 tokens.
That is, when g=0, t=20
After James played the games 3 times, he has 8 tokens left
That is, when g=3, t=8
(x,y)
(0,20) (3,8)
m=y2-y1 / x2-x1
=(8-20) / (3-0)
= -12 / 3
m= -4
Slope of the line, m= -4
y=mx + b
No. of tokens left depend on No. of games James plays
t is a function of g.
t(g)
t(g)= -4g + 20
1. Angles ADC and CDB are supplementary, thus
m∠ADC+m∠CDB=180°.
Since m∠ADC=115°, you have that m∠CDB=180°-115°=65°.
2. Triangle BCD is isosceles triangle, because it has two congruent sides CB and CD. The base of this triangle is segment BD. Angles that are adjacent to the base of isosceles triangle are congruent, then
m∠CDB=m∠CBD=65°.
The sum of the measures of interior angles of triangle is 180°, therefore,
m∠CDB+m∠CBD+m∠BCD=180° and
m∠BCD=180°-65°-65°=50°.
3. Triangle ABC is isosceles, with base BC. Then
m∠ABC=m∠ACB.
From the previous you have that m∠ABC=65° (angle ABC is exactly angle CBD). So
m∠ACB=65°.
4. Angles BCD and DCA together form angle ACB. This gives you
m∠ACB=m∠ACD+m∠BCD,
m∠ACD=65°-50°=15°.
Answer: 15°.
In a triangle, the angle with the greatest measure is always opposite to the longest side.