Answer:
isn't an equivalence relation. It is reflexive but neither symmetric nor transitive.
Step-by-step explanation:
Let
denote a set of elements.
would denote the set of all ordered pairs of elements of
.
For example, with
,
and
are both members of
. However,
because the pairs are ordered.
A relation
on
is a subset of
. For any two elements
,
if and only if the ordered pair
is in
.
A relation
on set
is an equivalence relation if it satisfies the following:
- Reflexivity: for any
, the relation
needs to ensure that
(that is:
.)
- Symmetry: for any
,
if and only if
. In other words, either both
and
are in
, or neither is in
.
- Transitivity: for any
, if
and
, then
. In other words, if
and
are both in
, then
also needs to be in
.
The relation
(on
) in this question is indeed reflexive.
,
, and
(one pair for each element of
) are all elements of
.
isn't symmetric.
but
(the pairs in
are all ordered.) In other words,
isn't equivalent to
under
even though
.
Neither is
transitive.
and
. However,
. In other words, under relation
,
and
does not imply
.
Answer:
The variable, y is 11°
Step-by-step explanation:
The given parameters are;
in triangle ΔABC;
in triangle ΔFGH;
Segment
= 14
Segment
= 14
Segment
= 27
Segment
= 19
Segment
= 19
Segment
= 2·y + 5
∡A = 32°
∡G = 32°
∡A = ∠BAC which is the angle formed by segments
= 14 and
= 19
Therefore, segment
= 27, is the segment opposite to ∡A = 32°
Similarly, ∡G = ∠FGH which is the angle formed by segments
= 14 and
= 19
Therefore, segment
= 2·y + 5, is the segment opposite to ∡A = 32° and triangle ΔABC ≅ ΔFGH by Side-Angle-Side congruency rule which gives;
≅
by Congruent Parts of Congruent Triangles are Congruent (CPCTC)
∴
=
= 27° y definition of congruency
= 2·y + 5 = 27° by transitive property
∴ 2·y + 5 = 27°
2·y = 27° - 5° = 22°
y = 22°/2 = 11°
The variable, y = 11°
Answer:
Option c is right.
Step-by-step explanation:
Given is a parabola y =x^2
From that transformation is done to get parabola as
y =(0.2x)^2
We find that instead of x here we use 0.2x
i.e. New x = 5 times old x
Hence there is a horizontal expansion of scale factor 5.
We can check with any point also
When y =4, x=2 in the parent graph
But when y =4 , we have x = 10 in the new graph
i.e. there is a horizontal expansion of scale factor 5.
Answer: 30:5
Step-by-step explanation:
Five levels were beaten so thirty levels are left so whats left to what’s beaten is 30:5
Answer:
Z = (42-20)/4 = 5.5
Z = X-μ / σ
Step-by-step explanation: