7 7/8 - 3 1/4
7 7/8 = 6.125
3 1/4 = 0.75
so 6.125 - 0.75
= 5.375
as a mixed fraction the answer is 5 3/8
Answer:
18 units
Step-by-step explanation:
So let's list out the sides.
for the first square let's just call them x
for the second square then they would be x+5 and x-3
So let's write out their areas we will cal the area of the first one z
x*x = z
(x+5)*(x-3) = z+21
since z = x^2 we can set up the second equation as a quadratic.
(x+5)*(x-3) = x^2 + 21
x^2 - 3x + 5x - 15 = x^2 + 21
But look, the x^2s cancel out
2x - 15 = 21
2x = 36
x = 18
Test it out and see if it fits the description, And if you don't understand anything just let me know so I can explain more.
1)<em> </em><em> </em><em> </em><em> </em><em> </em><em>4</em><em><</em><em>7</em>
<em> </em><em> </em><em> </em><em>×</em><em>7</em><em> </em><em> </em><em> </em><em> </em><em> </em><em>×</em><em>7</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>28</em><em><</em><em>49</em>
<em> </em><em> </em><em> </em><em>×</em><em>6</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>×</em><em>6</em>
<em> </em><em> </em><em> </em><em> </em><em>168</em><em><</em><em>294</em>
<em> </em><em> </em><em> </em><em>×</em><em>3</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>×</em><em>3</em>
<em> </em><em> </em><em> </em><em>504</em><em><</em><em>882</em>
<em> </em><em> </em><em> </em><em>×</em><em>10</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>×</em><em>10</em>
<em> </em><em> </em><em> </em><em>504</em><em>0</em><em><</em><em>882</em><em>0</em>
2) 11>-2
+5 +5
16> 3
+3 +3
19>6
+-4 +-4
15>2
3) -4<-2
-6 -6
-10<-8
-8 -8
-18<-16
-2 -2
-20<-18
4) -8<8
÷-4 ÷-4
2<-2
÷-2 ÷-2
-1< 1
5) <em>~</em><em>The</em><em> </em><em>a</em><em>ffect</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>inequality</em><em> </em><em>sign</em><em> </em><em>didn't</em><em> </em><em>change</em><em>.</em><em> </em><em>If you add or subtract the same positive or negative number to both sides of an inequality or an equation, the inequality stays the same. If you multiply or divide both sides of an inequality or an equation by the same positive number, the inequality stays the same.</em><em> </em><em>This</em><em> </em><em>is</em><em> </em><em>because</em><em> </em><em>when</em><em> </em><em>manipulating</em><em> </em><em>inequalit</em><em>i</em><em>e</em><em>s</em><em> </em><em>there</em><em> </em><em>are</em><em> </em><em>rules</em><em> </em><em>this</em><em> </em><em>if</em><em> </em><em>a < b then a + c < b + c</em><em> </em><em>so</em><em> </em><em>we</em><em> </em><em>get</em><em> </em><em>a</em><em> </em><em>new</em><em> </em><em>number</em><em> </em><em>that</em><em> </em><em>replaces</em><em> </em><em>a</em><em> </em><em>and</em><em> </em><em>b</em><em> </em><em>yet</em><em> </em><em>the</em><em> </em><em>inequality</em><em> </em><em>symbol</em><em> </em><em>stays</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>so</em><em> </em><em>a</em><em> </em><em>still</em><em> </em><em>is</em><em> </em><em>smaller</em><em> </em><em>than</em><em> </em><em>b</em><em>.</em>
Hope this helped you- have a good day bro cya)