1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorLugansk [536]
3 years ago
13

Consider the function f given by f(x)=x*(e^(-x^2)) for all real numbers x.

Mathematics
2 answers:
NISA [10]3 years ago
5 0

Answer:

\frac{\sqrt{\pi}}{4}

Step-by-step explanation:

You are going to integrate the following function:

g(x)=x*f(x)=x*xe^{-x^2}=x^2e^{-x^2}  (1)

furthermore, you know that:

\int_0^{\infty}e^{-x^2}=\frac{\sqrt{\pi}}{2}

lets call to this integral, the integral Io.

for a general form of I you have In:

I_n=\int_0^{\infty}x^ne^{-ax^2}dx

furthermore you use the fact that:

I_n=-\frac{\partial I_{n-2}}{\partial a}

by using this last expression in an iterative way you obtain the following:

\int_0^{\infty}x^{2s}e^{-ax^2}dx=\frac{(2s-1)!!}{2^{s+1}a^s}\sqrt{\frac{\pi}{a}} (2)

with n=2s a even number

for s=1 you have n=2, that is, the function g(x). By using the equation (2) (with a = 1) you finally obtain:

\int_0^{\infty}x^2e^{-x^2}dx=\frac{(2(1)-1)!}{2^{1+1}(1^1)}\sqrt{\pi}=\frac{\sqrt{\pi}}{4}

tankabanditka [31]3 years ago
4 0

Answer:

\int^{\infty}_{0}xf(x)dx=\frac{\pi}{4}  

Step-by-step explanation:

We need to find the integrate of:

\int^{\infty}_{0}xf(x)dx

Let's use the integration by parts rule.

\int^{\infty}_{0}xf(x)dx=u*v-\int vdu (1)

u=x and du=dx

dv=f(x)dx and v=\int f(x)dx

f(x)=xe^{-x^{2}}

v=\int xe^{-x^{2}}dx if we use change variable we can solve it, we can do a=-x^{2} then da=-2xdx

So we have:

v=-\frac{1}{2}\int e^{a}da

v=-\frac{1}{2}e^{-x^{2}}

Using this in (1) we have:

\int^{\infty}_{0}xf(x)dx=(-\frac{1}{2}x*e^{-x^{2}})|^{\infty}_{0}-\int^{\infty}_{0} (-\frac{1}{2}e^{-x^{2}})dx

The used criteria to make the first term zero is because the exponential tends to zero faster than the x tends to infinity.    

\int^{\infty}_{0}xf(x)dx=0+\frac{1}{2}\int^{\infty}_{0} e^{-x^{2}}dx  

We know that the integral from 0 to infinity of e^{-x^{2}}=\frac{\sqrt{\pi}}{2}, hence:  \int^{\infty}_{0}xf(x)dx=0+\frac{1}{2}\frac{\sqrt{\pi}}{2}

\int^{\infty}_{0}xf(x)dx=\frac{\pi}{4}  

I hope it helps you!

 

         

You might be interested in
Find h(x, y) = g(f(x, y)). g(t) = t + ln(t), f(x, y) = 4 − xy 2 + x2y2 h(x, y) =
san4es73 [151]
-2in = the equals sign has a slash through it 0
3 0
3 years ago
Explain how to multiply the following whole numbers 21 x 14
Lesechka [4]

Answer:

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Step-by-step explanation:

Given

21\:\times \:14

Line up the numbers

\begin{matrix}\space\space&2&1\\ \times \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers:    1×4=4

\frac{\begin{matrix}\space\space&2&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers:    2×4=8

\frac{\begin{matrix}\space\space&\textbf{2}&1\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number

\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers:    1×1=1

\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers:    2×1=2

\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.

\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&\times \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion

\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4

\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9

\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

6 0
3 years ago
Four balls of wool will make 8 knitted caps.How many balls of wool will Malcom need if he wants to make 6 caps?
SOVA2 [1]
3 balls of wool because 4 balls of wool/8 caps=1/2 ball of wool to make each cap. 1/2 ball x 6 caps=3 balls of wool.
3 0
3 years ago
Read 2 more answers
A caterer for a wedding reception wants to use a recipe for eggplant salad that recommends using 1.8 kg of eggplant for 10
aalyn [17]
You need to go to school sorry I don’t know I just joined sorry
8 0
3 years ago
Y=arccos(1/x)<br><br> Please help me do them all! I don’t know derivatives :(
Stells [14]

Answer:

f(x) =  {sec}^{ - 1} x \\ let \: y = {sec}^{ - 1} x  \rightarrow \: x = sec \: y\\  \frac{dx}{dx}  =  \frac{d(sec \: y)}{dx}  \\ 1 = \frac{d(sec \: y)}{dx} \times  \frac{dy}{dy}  \\ 1 = \frac{d(sec \: y)}{dy} \times  \frac{dy}{dx}  \\1 = tan \: y.sec \: y. \frac{dy}{dx}  \\ \frac{dy}{dx} =  \frac{1}{tan \: y.sec \: y}  \\ \frac{dy}{dx} =  \frac{1}{ \sqrt{( {sec}^{2}   \: y - 1}) .sec \: y}  \\ \frac{dy}{dx} =  \frac{1}{ |x |  \sqrt{ {x }^{2}  - 1} } \\   \therefore  \frac{d( {sec}^{ - 1}x) }{dx}  =  \frac{1}{ |x |  \sqrt{ {x }^{2}  - 1} } \\ \frac{d( {sec}^{ - 1}5x) }{dx}  =  \frac{1}{ |5x |  \sqrt{25 {x }^{2}  - 1} }\\\\y=arccos(\frac{1}{x})\Rightarrow cosy=\frac{1}{x}\\x=secy\Rightarrow y=arcsecx\\\therefore \frac{d( {sec}^{ - 1}x) }{dx}  =  \frac{1}{ |x |  \sqrt{ {x }^{2}  - 1} }

4 0
2 years ago
Other questions:
  • If a circle has a diameter whose endpoints are (-5, 8) and (5, -8), then the circle has its center at the origin. True False
    13·2 answers
  • Originally a rectangle has dimensions 12in by 8in. If both are increased by the same amount, the area is doubled. Find the new d
    7·2 answers
  • A gazebo is located at the center of a large, circular lawn with a diameter of 100 feet. Straight paths extend from the gazebo t
    5·2 answers
  • <img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B4%20-%20%20%7Bx%7D%5E%7B2%7Ddx%20%7D%20" id="TexFormula1" title=" \sqrt{4 - {x}^
    14·1 answer
  • 28x4 disruptive property
    5·1 answer
  • Write an equation in standard form.
    12·2 answers
  • I will give brainliest!
    6·1 answer
  • A car dealership paid $12,800 for a car. They mark up the price by 20%
    7·2 answers
  • Plz help it’s due tonight!!!
    12·1 answer
  • Help stuck on this question
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!