Answer:
a < -30/31
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
7a + 42 + 8 < -10 + 9a - 64a
<u>Step 2: Solve for </u><em><u>a</u></em>
- Combine like terms (a): 7a + 42 + 8 < -10 - 55a
- Combine like terms: 7a + 50 < -10 - 55a
- [Addition Property of Equality] Add 55a on both sides: 62a + 50 < -10
- [Subtraction Property of Equality] Subtract 50 on both sides: 62a < -60
- [Division Property of Equality] Divide 62 on both sides: a < -30/31
Here we see any number <em>a</em> less than -30/31 would work as a solution to the inequality.
Answer:
80 students
Step-by-step explanation:
12/80 is 0.15 or 15%
y=7 i got this answer cause i realized that 12 is only 3 numbers away from 9 so i added 3 to 4 and 3+4=7
hope it helps
=[(sinx/cosx)/(1+1/cosx)] + [(1+1/cosx)/(sinx/cosx)]
=[(sinx/cosx)/(cosx+1/cosx)]+[(cosx+1/cosx)/(sinx/cosx)]
= [sinx/(cosx+1)] + [(cosx+1)/sinx]
= [sin^2x+(cosx+1)^2] / [sinx (cosx+1)]
= [2+2cosx] / [sinx(cosx+1)]
=[2(cosx+1)] / [sinx (cosx+1)]
= 2/sinx
= 2 cscx
(I think this will be helpful for you. if you can see the picture, it has more detail in it.)