Splitting up [0, 3] into
equally-spaced subintervals of length
gives the partition
![\left[0, \dfrac3n\right] \cup \left[\dfrac3n, \dfrac6n\right] \cup \left[\dfrac6n, \dfrac9n\right] \cup \cdots \cup \left[\dfrac{3(n-1)}n, 3\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%20%5Cdfrac3n%5Cright%5D%20%5Ccup%20%5Cleft%5B%5Cdfrac3n%2C%20%5Cdfrac6n%5Cright%5D%20%5Ccup%20%5Cleft%5B%5Cdfrac6n%2C%20%5Cdfrac9n%5Cright%5D%20%5Ccup%20%5Ccdots%20%5Ccup%20%5Cleft%5B%5Cdfrac%7B3%28n-1%29%7Dn%2C%203%5Cright%5D)
where the right endpoint of the
-th subinterval is given by the sequence

for
.
Then the definite integral is given by the infinite Riemann sum

Answer:
Step-by-step explanation:
First convert km to meters
143000 km = 143,000,000m = 1.43*10^8 m
Now convert 10 billion to scientific notation1 00
10 billion = 1 * 10^10
What this means is that 1 * 10^10 meters in outer space = 1 meter for the scale model.
Now show what the ratio is for
1.43*10^8
======== Divide by the denominator
1 * 10^10
1.43 * 10^(8 - 10)
1.43 * 10 ^ - 2 meters
Answer: 0.0143m or B
Answer:
I get 92 but not really sire