P = 2(L + W)
L = W + 5
A = 4P + 2
P = 2(W + 5 + W)
P = 2(2W + 5)
P = 4W + 10
A = 4P + 2
A = 4(4W + 10) + 2
A = 16W + 42
A = L * W
A = W(W + 5)
A = W^2 + 5W
W^2 + 5W = 16W + 42
W^2 + 5W - 16W - 42 = 0
W^2 - 11W - 42 = 0
(W + 3)(W - 14) = 0
W - 14 = 0
W = 14 <==
L = W + 5
L = 14 + 5
L = 19 <==
P = 2(19 + 14)
P = 2(33)
P = 66
A = L * W
A = 19 * 14
A = 266
answer : length = 19, width = 14....perimeter = 66....area = 266
Answer:
1/21
Step-by-step explanation:
=> 
=> 
=> 
=> 1/21
4sin²(x) = 5 - 4cos(x)
4{¹/₂[1 - cos(2x)]} = 5 - 4cos(x)
4{¹/₂[1] - ¹/₂[cos(2x)]} = 5 - 4cos(x)
4[¹/₂ - ¹/₂cos(2x)] = 5 - 4cos(x)
4[¹/₂] - 4[¹/₂cos(2x)] = 5 - 4cos(x)
2 - 2cos(2x) = 5 - 4cos(x)
- 2 - 2
-2cos(2x) = 3 - 4cos(x)
-2[2cos²(x) - 1] = 3 - 4cos(x)
-4cos²(x) + 2 = 3 - 4cos(x)
- 2 - 2
-4cos²(x) = 1 - 4cos(x)
-4cos²(x) + 4cos(x) - 1 = 0
4cos²(x) - 4cos(x) + 1 = 0
[2cos(x) - 1]² = 0
2cos(x) - 1 = 0
+ 1 + 1
2cos(x) = 1
2 2
cos(x) = ¹/₂
cos⁻¹[cos(x)] = cos⁻¹(¹/₂)
x = 60, 300
x = π/3, 5π/3
[0, 2π) = 0 ≤ x < 2π
[0, 2π) = 0 ≤ π/3 ≤ 2π or 0 ≤ 5pi/3 < 2π
Answer:
i think b
Step-by-step explanation: