297 cm is the total surface area of the square pyramid
The answer is 5.13 in²
Step 1. Calculate the diameter of the circle (d).
Step 2. Calculate the radius of the circle (r).
Step 3. Calculate the area of the circle (A1).
Step 4. Calculate the area of the square (A2).
Step 5. Calculate the difference between two areas (A1 - A2) and divide it by 4 (because there are total 4 segments) to get <span>the area of one segment formed by a square with sides of 6" inscribed in a circle.
</span>
Step 1:
The diameter (d) of the circle is actually the diagonal (D) of the square inscribed in the circle. The diagonal (D) of the square with side a is:
D = a√2 (ratio of 1:1:√2 means side a : side a : diagonal D = 1 : 1 : √2)
If a = 6 in, then D = 6√2 in.
d = D = 6√2 in
Step 2.
The radius (r) of the circle is half of its diameter (d):
r = d/2 = 6√2 / 2 = 3√2 in
Step 3.
The area of the circle (A1) is:
A = π * r²
A = 3.14 * (3√2)² = 3.14 * 3² * (√2)² = 3.14 * 9 * 2 = 56.52 in²
Step 4.
The area of the square (A2) is:
A2 = a²
A2 = 6² = 36 in²
Step 5:
(A1 - A2)/4 = (56.52 - 36)/4 = 20.52/4 = 5.13 in²
Answer:
(D)9 divided by sin 60 degrees
Step-by-step explanation:
From the given figure, using trigonometry

Substituting the given values, we get





Thus, The length of the support AB is 9 divided by sin 60 degrees.
Answer:
You flip one and multiply them