Answer:
Pythagorian theorem:
7^2=13+b^2 -> b^2=49-13=36
The square root of 36 is obviously 6.
So, the other leg has a length of 6 inches
Step-by-step explanation:
Answer:

Step-by-step explanation:
There is not much that can be done to figure out how to write 0.8 as a fraction, except to literally use what the decimal portion of your number, the .8, means.
Since there are 1 digits in 8, the very last digit is the "10th" decimal place.
So we can just say that .8 is the same as 8/10.
The fraction is not reduced to lowest terms. We can reduce this fraction to lowest terms by dividing both the numerator and denominator by 2.
Why divide by 2? 2 is the Greatest Common Divisor (GCD) or Greatest Common Factor (GCF) of the numbers 8 and 10.
So, this fraction reduced to lowest terms is 4/5
So your final answer is: 0.8 can be written as the fraction 8/10 simplified to 4/5
Answer:
The value of x is 7.
Step-by-step explanation:
First, you have to make the left side into 1 fraction by making the denormintor the same and make it into simplest form :






Next you have to multiply both sides by 2 in order to make x the subject :



Answer:
168 girls.
Step-by-step explanation:
There are a total of 6 + 7 = 13 'parts'.
So one part = 364 / 13 = 28.
So the number of girls = 6 * 28
= 168.
Check the picture below, so, that'd be the square inscribed in the circle.
so... hmm the diagonals for the square are the diameter of the circle, and keep in mind that the radius of a circle is half the diameter, so let's find the diameter.
![\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -2}}\quad ,&{{ 5}})\quad % (c,d) &({{ -8}}\quad ,&{{ -3}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-8-(-2)]^2+[-3-5]^2} \\\\\\ d=\sqrt{(-8+2)^2+(-3-5)^2}\implies d=\sqrt{(-6)^2+(-8)^2} \\\\\\ d=\sqrt{36+64}\implies d=\sqrt{100}\implies d=10](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%28%7B%7B%20-2%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0A%26%28%7B%7B%20-8%7D%7D%5Cquad%20%2C%26%7B%7B%20-3%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-8-%28-2%29%5D%5E2%2B%5B-3-5%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%28-8%2B2%29%5E2%2B%28-3-5%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-6%29%5E2%2B%28-8%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B36%2B64%7D%5Cimplies%20d%3D%5Csqrt%7B100%7D%5Cimplies%20d%3D10)
that means the radius r = 5.
now, what's the center? well, the Midpoint of the diagonals, is really the center of the circle, let's check,

so, now we know the center coordinates and the radius, let's plug them in,