1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adell [148]
3 years ago
9

One of the vertices of an equilateral triangle is on the vertex of a square and two other vertices are on the not adjacent sides

of the same square. Find the side of the triangle if the side of the square is 10 ft.

Mathematics
2 answers:
Elina [12.6K]3 years ago
5 0
<h2>Answer:</h2>

<em> The side of the triangle is either 38.63ft or 10.35ft</em>

<h2>Step-by-step explanation:</h2>

This problem can be translated as an image as shown in the Figure below. We know that:

  • The side of the square is 10 ft.
  • One of the vertices of an equilateral triangle is on the vertex of a square.
  • Two other vertices are on the not adjacent sides of the same square.

Let's call:

Since the given triangle is equilateral, each side measures the same length. So:

x: The side of the equilateral triangle (Triangle 1)

y: A side of another triangle called Triangle 2.

That length is the hypotenuse of other triangle called Triangle 2. Therefore, by Pythagorean theorem:

\mathbf{(1)} \ x^2=100+y^2

We have another triangle, called Triangle 3, and given that the side of the square is 10ft, then it is true that:

y+(10-y)=10

Therefore, for Triangle 3, we have that by Pythagorean theorem:

(10-y)^2+(10-y)^2=x^2 \\ \\ 2(10-y)^2=x^2 \\ \\ \\ \mathbf{(2)} \ x^2=2(10-y)^2

Matching equations (1) and (2):

2(10-y)^2=100+y^2 \\ \\ 2(100-20y+y^2)=100+y^2 \\ \\ 200-40y+2y^2=100+y^2 \\ \\ (2y^2-y^2)-40y+(200-100)=0 \\ \\ y^2-40y+100=0

Using quadratic formula:

y_{1,2}=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \\ \\ y_{1,2}=\frac{-(-40) \pm \sqrt{(-40)^2-4(1)(100)}}{2(1)} \\ \\ \\ y_{1}=37.32 \\ \\ y_{2}=2.68

Finding x from (1):

x^2=100+y^2 \\ \\ x_{1}=\sqrt{100+37.32^2} \\ \\ x_{1}=38.63ft \\ \\ \\ x_{2}=\sqrt{100+2.68^2} \\ \\ x_{2}=10.35ft

<em>Finally, the side of the triangle is either 38.63ft or 10.35ft</em>

Reika [66]3 years ago
4 0

Answer:

10\sqrt{6} -10\sqrt{2} \approx 10.35 ft

Step-by-step explanation:

1) Check the first picture, to visualize what the question has told. An equilateral triangle DLM inscribed in a square ABCD. A triangle like that has three 60º angles.

2) Looking to DCL and DBE we have two right triangles. The next natural step, is doing Pythagorean theorem.

\triangle DCO \:a^{2}=10^{2}+x^{2}\Rightarrow a=\sqrt{100+x^{2}}\\\triangle DBE \:a^{2}=10^{2}+y^{2}\Rightarrow a=\sqrt{100+y^{2}}

Since this is an equilateral triangle, all three sides have the same size, we can set them as equal:

\sqrt{100+y^{2}}=\sqrt{100+x^{2}}\\\left ( \sqrt{100+y^{2}} \right )^{2}=\left ( \sqrt{100+x^{2}} \right)^{2}100+y^{2}=100+x^{2}\\y^{2}=x^{2}\\y=x

3} This allows to replace x for y. We also have, since there is symmetry. We can check that's on the left, a right isosceles triangle (ALE) whose hypotenuse is a\sqrt{2}. Hence, the hypotenuse would be \sqrt{2}(10-x)

. Again starting from the fact this is an equilateral triangle

\sqrt{2}(10-x)=\sqrt{100-x^2}\\\left ( \sqrt{2}(10-x) \right )^{2}=\left ( \sqrt{100+x^{2}} \right)^{2}\\2(100-20x+x^{2})=100+x^{2}\\200-40x+2x^{2}=100+x^{2}\Rightarrow x^{2}-40x+100

Completing \:the \: square\\ x^{2}-40x+100 -100 =0-100\\x^{2}-40x=-100\\\\ Adding \:the \:half \:of \:the \:absolute \:value \:of\: b, and \:square \:it\\x^{2}-40x +20^{2}= 20^{2}-100\\x^{2}-40x +400= 400-100\\ Rewrite\\(x-20)^2=300\\(x-20)=\sqrt{300}\:\rightarrow x-20=10\sqrt{3}\\\rightarrow x_{1}=20+10\sqrt{3} \approx37.32, x_{2}=20-10\sqrt{3}\approx 2.67

4) One and only one value must fit. So let's try plugging the minor one.

\sqrt{2}(10- (20-10\sqrt{3})=10\sqrt{6}-10\sqrt{2}\approx 10.35 \:ft

\sqrt{2}(10- (20+10\sqrt{3})=-10\sqrt{6}-10\sqrt{2}\approx -38.64 \:ft

If one vertex of the triangle is on the square, it can't be an outlying value as the absolute value of 38.64.  Furthermore the greatest value for a line segment of this square would be the value of the diagonal, in this case10\sqrt{2}\approx 14.14

So, it is 10.35

You might be interested in
Find sin q if q is an angle in standard position and the point with coordinates (4, 3) lies on the terminal side of the angle.
jolli1 [7]
<span>Let’s say we have a starting point (0,0), the point (4,3) are distance apart at 90 degrees, hence the hypotenuse to those two distance will be 5. Therefore sin q = 4/5.</span>
4 0
3 years ago
If 2x - 3 = 3x - 7, what is the value of x?
icang [17]

Answer:

x=4

Step-by-step explanation:

2x-3=3x-7

Subtract 2x from both sides of the equation

  • -3=x-7

Add 7 to both sides of the equation to isolate x

  • 4=x
7 0
3 years ago
Nancy wants to make a graph to show the relationship between the temperature of water, in degrees Celsius, and the time, in minu
ollegr [7]
The correct answer is B
8 0
3 years ago
PLEASE HELP, GOOD ANSWERS GET BRAINLIEST. +40 POINTS WRONG ANSWERS GET REPORTED
MA_775_DIABLO [31]
1. Ans:(A) 123

Given function: f(x) = 8x^2 + 11x
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(8x^2 + 11x)
=> \frac{d}{dx} f(x) = \frac{d}{dx}(8x^2) + \frac{d}{dx}(11x)
=> \frac{d}{dx} f(x) = 2*8(x^{2-1}) + 11
=> \frac{d}{dx} f(x) = 16x + 11

Now at x = 7:
\frac{d}{dx} f(7) = 16(7) + 11

=> \frac{d}{dx} f(7) = 123

2. Ans:(B) 3

Given function: f(x) =3x + 8
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(3x + 8)
=> \frac{d}{dx} f(x) = \frac{d}{dx}(3x) + \frac{d}{dx}(8)
=> \frac{d}{dx} f(x) = 3*1 + 0
=> \frac{d}{dx} f(x) = 3

Now at x = 4:
\frac{d}{dx} f(4) = 3 (as constant)

=>Ans:  \frac{d}{dx} f(4) = 3

3. Ans:(D) -5

Given function: f(x) = \frac{5}{x}
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(\frac{5}{x})
or 
\frac{d}{dx} f(x) = \frac{d}{dx}(5x^{-1})
=> \frac{d}{dx} f(x) = 5*(-1)*(x^{-1-1})
=> \frac{d}{dx} f(x) = -5x^{-2}

Now at x = -1:
\frac{d}{dx} f(-1) = -5(-1)^{-2}

=> \frac{d}{dx} f(-1) = -5 *\frac{1}{(-1)^{2}}
=> Ans: \frac{d}{dx} f(-1) = -5

4. Ans:(C) 7 divided by 9

Given function: f(x) = \frac{-7}{x}
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(\frac{-7}{x})
or 
\frac{d}{dx} f(x) = \frac{d}{dx}(-7x^{-1})
=> \frac{d}{dx} f(x) = -7*(-1)*(x^{-1-1})
=> \frac{d}{dx} f(x) = 7x^{-2}

Now at x = -3:
\frac{d}{dx} f(-3) = 7(-3)^{-2}

=> \frac{d}{dx} f(-3) = 7 *\frac{1}{(-3)^{2}}
=> Ans: \frac{d}{dx} f(-3) = \frac{7}{9}

5. Ans:(C) -8

Given function: 
f(x) = x^2 - 8

Now if we apply limit:
\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^2 - 8)

=> \lim_{x \to 0} f(x) = (0)^2 - 8
=> Ans: \lim_{x \to 0} f(x) = - 8

6. Ans:(C) 9

Given function: 
f(x) = x^2 + 3x - 1

Now if we apply limit:
\lim_{x \to 2} f(x) = \lim_{x \to 2} (x^2 + 3x - 1)

=> \lim_{x \to 2} f(x) = (2)^2 + 3(2) - 1
=> Ans: \lim_{x \to 2} f(x) = 4 + 6 - 1 = 9

7. Ans:(D) doesn't exist.

Given function: f(x) = -6 + \frac{x}{x^4}
In this case, even if we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

Check:
f(x) = -6 + \frac{x}{x^4} \\ f(x) = -6 + \frac{1}{x^3} \\ f(x) = \frac{-6x^3 + 1}{x^3} \\ Rationalize: \\ f(x) = \frac{-6x^3 + 1}{x^3} * \frac{x^{-3}}{x^{-3}} \\ f(x) = \frac{-6x^{3-3} + x^{-3}}{x^0} \\ f(x) = -6 + \frac{1}{x^3} \\ Same

If you apply the limit, answer would be infinity.

8. Ans:(A) Doesn't Exist.

Given function: f(x) = 9 + \frac{x}{x^3}
Same as Question 7
If we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

9, 10.
Please attach the graphs. I shall amend the answer. :)

11. Ans:(A) Doesn't exist.

First We need to find out: \lim_{x \to 9} f(x) where,
f(x) = \left \{ {{x+9, ~~~~~x \textless 9} \atop {9- x,~~~~~x \geq 9}} \right.

If both sides are equal on applying limit then limit does exist.

Let check:
If x \textless 9: answer would be 9+9 = 18
If x \geq 9: answer would be 9-9 = 0

Since both are not equal, as 18 \neq 0, hence limit doesn't exist.


12. Ans:(B) Limit doesn't exist.

Find out: \lim_{x \to 1} f(x) where,

f(x) = \left \{ {{1-x, ~~~~~x \textless 1} \atop {x+7,~~~~~x \textgreater 1} } \right. \\ and \\ f(x) = 8, ~~~~~ x=1

If all of above three are equal upon applying limit, then limit exists.

When x < 1 -> 1-1 = 0
When x = 1 -> 8
When x > 1 -> 7 + 1 = 8

ALL of the THREE must be equal. As they are not equal. 0 \neq 8; hence, limit doesn't exist.

13. Ans:(D) -∞; x = 9

f(x) = 1/(x-9).

Table:

x                      f(x)=1/(x-9)       

----------------------------------------

8.9                       -10

8.99                     -100

8.999                   -1000

8.9999                 -10000

9.0                        -∞


Below the graph is attached! As you can see in the graph that at x=9, the curve approaches but NEVER exactly touches the x=9 line. Also the curve is in downward direction when you approach from the left. Hence, -∞,  x =9 (correct)

 14. Ans: -6

s(t) = -2 - 6t

Inst. velocity = \frac{ds(t)}{dt}

Therefore,

\frac{ds(t)}{dt} = \frac{ds(t)}{dt}(-2-6t) \\ \frac{ds(t)}{dt} = 0 - 6 = -6

At t=2,

Inst. velocity = -6


15. Ans: +∞,  x =7 

f(x) = 1/(x-7)^2.

Table:

x              f(x)= 1/(x-7)^2     

--------------------------

6.9             +100

6.99           +10000

6.999         +1000000

6.9999       +100000000

7.0              +∞

Below the graph is attached! As you can see in the graph that at x=7, the curve approaches but NEVER exactly touches the x=7 line. The curve is in upward direction if approached from left or right. Hence, +∞,  x =7 (correct)

-i

7 0
3 years ago
Read 2 more answers
Michelle buys a motorcycle for $10,000. The motorcycle loses 20% of its value each year. The depreciation of the motorcycle is s
makkiz [27]
You can use cross product to slove this equation.

3 0
3 years ago
Other questions:
  • An elephant eats 5% of his body weight each day if he eats 300 pounds of food,how much does it weigh?
    11·1 answer
  • In triangle ABCD, m <br> What is m
    14·1 answer
  • What is the distance between the points (0,5) and (-4,2)
    11·1 answer
  • Which box plot represents the data?<br><br> 135, 149, 156, 112, 134, 141, 154, 116, 134, 156
    10·1 answer
  • An exterminator must treat the perimeter of a house for insects. If the house is 90 feet long and 30 feet wide, what is the tota
    11·1 answer
  • What are the diminshens of a cube with the volume of 216?
    5·1 answer
  • Find the distance between the points C(−6, 5)<br> and D(−3, 1)<br> .
    14·2 answers
  • Female Height: Mean-63.6 Standard Deviation- 2.5
    8·1 answer
  • A pet store has 9 ​puppies, including 3 ​poodles, 3 ​terriers, and 3 retrievers. If Rebecka and​ Aaron, in that​ order, each sel
    10·1 answer
  • What is the missing number below in the solution to 968 divided by 10
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!