<h2>
Answer:</h2>
<em> The side of the triangle is either 38.63ft or 10.35ft</em>
<h2>
Step-by-step explanation:</h2>
This problem can be translated as an image as shown in the Figure below. We know that:
- The side of the square is 10 ft.
- One of the vertices of an equilateral triangle is on the vertex of a square.
- Two other vertices are on the not adjacent sides of the same square.
Let's call:
Since the given triangle is equilateral, each side measures the same length. So:
x: The side of the equilateral triangle (Triangle 1)
y: A side of another triangle called Triangle 2.
That length is the hypotenuse of other triangle called Triangle 2. Therefore, by Pythagorean theorem:
![\mathbf{(1)} \ x^2=100+y^2](https://tex.z-dn.net/?f=%5Cmathbf%7B%281%29%7D%20%5C%20x%5E2%3D100%2By%5E2)
We have another triangle, called Triangle 3, and given that the side of the square is 10ft, then it is true that:
![y+(10-y)=10](https://tex.z-dn.net/?f=y%2B%2810-y%29%3D10)
Therefore, for Triangle 3, we have that by Pythagorean theorem:
![(10-y)^2+(10-y)^2=x^2 \\ \\ 2(10-y)^2=x^2 \\ \\ \\ \mathbf{(2)} \ x^2=2(10-y)^2](https://tex.z-dn.net/?f=%2810-y%29%5E2%2B%2810-y%29%5E2%3Dx%5E2%20%5C%5C%20%5C%5C%202%2810-y%29%5E2%3Dx%5E2%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cmathbf%7B%282%29%7D%20%5C%20x%5E2%3D2%2810-y%29%5E2)
Matching equations (1) and (2):
![2(10-y)^2=100+y^2 \\ \\ 2(100-20y+y^2)=100+y^2 \\ \\ 200-40y+2y^2=100+y^2 \\ \\ (2y^2-y^2)-40y+(200-100)=0 \\ \\ y^2-40y+100=0](https://tex.z-dn.net/?f=2%2810-y%29%5E2%3D100%2By%5E2%20%5C%5C%20%5C%5C%202%28100-20y%2By%5E2%29%3D100%2By%5E2%20%5C%5C%20%5C%5C%20200-40y%2B2y%5E2%3D100%2By%5E2%20%5C%5C%20%5C%5C%20%282y%5E2-y%5E2%29-40y%2B%28200-100%29%3D0%20%5C%5C%20%5C%5C%20y%5E2-40y%2B100%3D0)
Using quadratic formula:
![y_{1,2}=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \\ \\ y_{1,2}=\frac{-(-40) \pm \sqrt{(-40)^2-4(1)(100)}}{2(1)} \\ \\ \\ y_{1}=37.32 \\ \\ y_{2}=2.68](https://tex.z-dn.net/?f=y_%7B1%2C2%7D%3D%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-%28-40%29%20%5Cpm%20%5Csqrt%7B%28-40%29%5E2-4%281%29%28100%29%7D%7D%7B2%281%29%7D%20%5C%5C%20%5C%5C%20%5C%5C%20y_%7B1%7D%3D37.32%20%5C%5C%20%5C%5C%20y_%7B2%7D%3D2.68)
Finding x from (1):
![x^2=100+y^2 \\ \\ x_{1}=\sqrt{100+37.32^2} \\ \\ x_{1}=38.63ft \\ \\ \\ x_{2}=\sqrt{100+2.68^2} \\ \\ x_{2}=10.35ft](https://tex.z-dn.net/?f=x%5E2%3D100%2By%5E2%20%5C%5C%20%5C%5C%20x_%7B1%7D%3D%5Csqrt%7B100%2B37.32%5E2%7D%20%5C%5C%20%5C%5C%20x_%7B1%7D%3D38.63ft%20%5C%5C%20%5C%5C%20%5C%5C%20x_%7B2%7D%3D%5Csqrt%7B100%2B2.68%5E2%7D%20%5C%5C%20%5C%5C%20x_%7B2%7D%3D10.35ft)
<em>Finally, the side of the triangle is either 38.63ft or 10.35ft</em>