1)
The connections between neurons in the retina, specifically the connections referred to as “lateral inhibition,” help us see which of the following better?
<em><u>A) Contrast</u></em>
B) Faces
<span>C) Colors
2)
</span>Improving the contrast of an image (making the dark regions darker and the light regions lighter) helps us to identify:
<em><u>A) The edges of objects</u></em>
B) The center of objects
<span>C) The color of an object
</span>
3)
What assumption does our visual system make in order to see curved surfaces (domes, holes)?
<em><u>A) Light comes from above</u></em>
B) Curved surfaces are always evenly lit
<span>C) Curved surfaces are always easy to see, no assumptions are made
</span>
4)
Which part of the face does our brain pay the most attention to?
<u><em>A) Eyes and mouth</em></u>
B) Eyes and ears
<span>C) Eyes and chin
</span>
5)
If all these assumptions sometimes lead to mistakes, for example in these optical illusions, why do we make them?
A) It helps us see things faster
B) It helps us see things correctly
C) It helps us pay attention to what's important
<em><u>D) All of the above
</u></em>
Hope that helps :)
<span>*the correct answers are bolded, italicized, and underlined.*</span>
The electric potential at the origin of the xy coordinate system is negative infinity
<h3>What is the electric field due to the 4.0 μC charge?</h3>
The electric field due to the 4.0 μC charge is E = kq/r² where
- k = electric constant = 9.0 × 10 Nm²/C²,
- q = 4.0 μC = 4.0 × 10 C and
- r = distance of charge from origin = x₁ - 0 = 2.0 m - 0 m = 2.0 m
<h3>What is the electric field due to the -4.0 μC charge?</h3>
The electric field due to the -4.0 μC charge is E = kq'/r² where
- k = electric constant = 9.0 × 10 Nm²/C²,
- q' = -4.0 μC = -4.0 × 10 C and
- r = distance of charge from origin = 0 - x₂ = 0 - (-2.0 m) = 0 m + 2.0 m = 2.0 m
Since both electric fields are equal in magnitude and directed along the negative x-axis, the net electric field at the origin is
E" = E + E'
= -2E
= -2kq/r²
<h3>What is the electric potential at the origin?</h3>
So, the electric potential at the origin is V = -∫₂⁰E".dr
= -∫₂⁰-2kq/r².dr
Since E and dr = dx are parallel and r = x, we have
= -∫₂⁰-2kqdxcos0/x²
= 2kq∫₂⁰dx/x²
= 2kq[-1/x]₂⁰
= -2kq[1/x]₂⁰
= -2kq[1/0 - 1/2]
= -2kq[∞ - 1/2]
= -2kq[∞]
= -∞
So, the electric potential at the origin of the xy coordinate system is negative infinity
Learn more about electric potential here:
brainly.com/question/26978411
#SPJ11
Answer:
The answer is below
Explanation:
Volt in physics is a term that is used to describe the unit of both electrical potential difference and electromotive force. In other words, it is a unit of measuring the voltage between two points. It is represented as "V".
The formula for Voltage is V=IR
Where V= Voltage, I = Current and R = Resistance.
An object of large mass is pulled down onto a surface with a greater force than an object of low mass and, as a consequence, there is greater friction between the surface of the heavy object than between the surface and the light object.