If you cannot get a chair to move across the floor, it is because static friction opposes your push. When you say static or kinetic friction the two object that facing each other are opposing each other. That's why you're having a hard time pushing the chair.
Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.
Answer:
a) 
b) 
c) 
Explanation:
From the exercise we know the initial velocity of the projectile and its initial height

To find what time does it take to reach maximum height we need to find how high will it go
b) We can calculate its initial height using the following formula
Knowing that its velocity is zero at its maximum height



So, the projectile goes 1024 ft high
a) From the equation of height we calculate how long does it take to reach maximum point



Solving the quadratic equation



So, the projectile reach maximum point at t=2s
c) We can calculate the final velocity by using the following formula:


Since the projectile is going down the velocity at the instant it reaches the ground is:

The percent complete is calculated by dividing the quantity of material progressed at a point in time by the total quantity required for the project. The resulting percent is multiplied by the current agreed committed value of the material item to obtain the VOWD for that item.
the answer is (a) molecules