<span>The bending of light rays by sun is twice in Einstein's theory as in Newton's theory of gravitation. Einstein's theory was verified by Eddington during the solar eclipse in 1919
Also observed precession of aphelion of mercury completely explained by Einstein's theory but not by Newtonian gravity</span>
Answer: Beth
Explanation: Dewayne (a) = 12/4 = 3m/s^2.
Beth (a) = 16/5 = 3.2 m/s^2.
So, Beth is the answer.
Answer:
Speed is a "scalar" quantity
(C) is the correct answer
An object could travel at 10 m/s to some point and then return to the origin at 10 m/s for an average speed of 10 m/s, however it's displacement over that time would be zero for a net velocity of zero.
Answer:
v = 10 [m/s].
Explanation:
The largest mass is that of 4 [kg], in this way the momentum can be calculated by means of the product of the mass by velocity.

where:
P = momentum [kg*m/s]
m = mass = 4 [kg]
v = velocity = 5 [m/s]
Now the momentum:
![P=4*5\\P=20[kg*m/s]](https://tex.z-dn.net/?f=P%3D4%2A5%5C%5CP%3D20%5Bkg%2Am%2Fs%5D)
This same momentum is equal for the other mass, in this way we can find the velocity.
![P=m*v\\20=2*v\\v=10[m/s]](https://tex.z-dn.net/?f=P%3Dm%2Av%5C%5C20%3D2%2Av%5C%5Cv%3D10%5Bm%2Fs%5D)
Weak nuclear force is weaker than the strong nuclear force with a smaller range than the electromagnetic force.
It acts between fermions with spin 1/2 basically quarks and leptons. It has a range of 10⁻¹⁸ meters.
Option 1 is incorrect. It is stronger than the gravitational force.
Option 2 is incorrect. It is weaker than the electromagnetic force.
Option 3 is incorrect. It has a smaller range than the strong nuclear force.