First find X by subtracting 9.8 from 14.7
X should equal 4.9
than fill in the equation for x
8(4.9-3.7)
you then subtract in the parenthasis
getting the answer of 1.2
finally multiply 1.2x8
Your final answer is 9.6
Answer:
3. [6x - 2y=2.
(2 + 6x=y
Step-by-step explanation:
Answer:
![E[X^2]= \frac{2!}{2^1 1!}= 1](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%20%5Cfrac%7B2%21%7D%7B2%5E1%201%21%7D%3D%201)

Step-by-step explanation:
For this case we can use the moment generating function for the normal model given by:
![\phi(t) = E[e^{tX}]](https://tex.z-dn.net/?f=%20%5Cphi%28t%29%20%3D%20E%5Be%5E%7BtX%7D%5D)
And this function is very useful when the distribution analyzed have exponentials and we can write the generating moment function can be write like this:

And we have that the moment generating function can be write like this:

And we can write this as an infinite series like this:

And since this series converges absolutely for all the possible values of tX as converges the series e^2, we can use this to write this expression:
![E[e^{tX}]= E[1+ tX +\frac{1}{2} (tX)^2 +....+\frac{1}{n!}(tX)^n +....]](https://tex.z-dn.net/?f=E%5Be%5E%7BtX%7D%5D%3D%20E%5B1%2B%20tX%20%2B%5Cfrac%7B1%7D%7B2%7D%20%28tX%29%5E2%20%2B....%2B%5Cfrac%7B1%7D%7Bn%21%7D%28tX%29%5En%20%2B....%5D)
![E[e^{tX}]= 1+ E[X]t +\frac{1}{2}E[X^2]t^2 +....+\frac{1}{n1}E[X^n] t^n+...](https://tex.z-dn.net/?f=E%5Be%5E%7BtX%7D%5D%3D%201%2B%20E%5BX%5Dt%20%2B%5Cfrac%7B1%7D%7B2%7DE%5BX%5E2%5Dt%5E2%20%2B....%2B%5Cfrac%7B1%7D%7Bn1%7DE%5BX%5En%5D%20t%5En%2B...)
and we can use the property that the convergent power series can be equal only if they are equal term by term and then we have:
![\frac{1}{(2k)!} E[X^{2k}] t^{2k}=\frac{1}{k!} (\frac{t^2}{2})^k =\frac{1}{2^k k!} t^{2k}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%282k%29%21%7D%20E%5BX%5E%7B2k%7D%5D%20t%5E%7B2k%7D%3D%5Cfrac%7B1%7D%7Bk%21%7D%20%28%5Cfrac%7Bt%5E2%7D%7B2%7D%29%5Ek%20%3D%5Cfrac%7B1%7D%7B2%5Ek%20k%21%7D%20t%5E%7B2k%7D)
And then we have this:
![E[X^{2k}]=\frac{(2k)!}{2^k k!}, k=0,1,2,...](https://tex.z-dn.net/?f=E%5BX%5E%7B2k%7D%5D%3D%5Cfrac%7B%282k%29%21%7D%7B2%5Ek%20k%21%7D%2C%20k%3D0%2C1%2C2%2C...)
And then we can find the ![E[X^2]](https://tex.z-dn.net/?f=E%5BX%5E2%5D)
![E[X^2]= \frac{2!}{2^1 1!}= 1](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%20%5Cfrac%7B2%21%7D%7B2%5E1%201%21%7D%3D%201)
And we can find the variance like this :
![Var(X^2) = E[X^4]-[E(X^2)]^2](https://tex.z-dn.net/?f=Var%28X%5E2%29%20%3D%20E%5BX%5E4%5D-%5BE%28X%5E2%29%5D%5E2)
And first we find:
![E[X^4]= \frac{4!}{2^2 2!}= 3](https://tex.z-dn.net/?f=E%5BX%5E4%5D%3D%20%5Cfrac%7B4%21%7D%7B2%5E2%202%21%7D%3D%203)
And then the variance is given by:

Answer:
0.857$ (Its really big in answer but This is the average result.
The REAL answer
0.857142857$
[- 3r²s² - 4sr² + 4rs - 8] is the resultant answer when we subtract the linear equation (7sr²+10-13r²s²) from (3r²s+ 4rs+2-16r²s²).
<h3>What are linear equations?</h3>
- A linear equation in one variable is a mathematical expression for an equation with only one variable.
- While any two real integers can represent A and B, the ambiguous variable x has just one possible value.
- The formula is Ax + B = 0.
- 9x + 78 = 18 is an example of a linear equation with just one variable.
So, we have:
- (3r²s+ 4rs+2-16r²s²) - (7sr²+10-13r²s²)
Now, calculate as follows:
- = (3r²s+ 4rs+2-16r²s²) - (7sr²+10-13r²s²)
- = 3r²s+ 4rs+2-16r²s² - 7sr²- 10 + 13r²s²
- = 13r²s² - 16r²s² - 7sr² + 3r²s + 4rs - 10 + 2
- = - 3r²s² - 4sr² + 4rs - 8
Therefore, [- 3r²s² - 4sr² + 4rs - 8] is the resultant answer when we subtract the linear equation (7sr²+10-13r²s²) from (3r²s+ 4rs+2-16r²s²).
Learn more about linear equations:
brainly.com/question/11897796
#SPJ13