<span>0.52%
First, let's convert that speed into m/s.
150 km/h * 1000 m/km / 3600 s/h = 41.667 m/s
Now let's see how much time gravity has to work on the ball. Divide the distance by the speed.
18 m / 41.667 m/s = 0.431996544 s
Now multiply that time by the gravitational acceleration to see what the vertical component to the ball's speed that gravity adds.
0.431996544 s * 9.8 m/s^2 = 4.233566131 m/s
Use the pythagorean theorem to get the new velocity of the ball.
sqrt(41.667^2 + 4.234^2) = 41.882 m/s
Finally, let's see what the difference is
(41.882 - 41.667)/41.667 = 0.005159959 = 0.5159959%
Rounding to 2 figures, gives 0.52%</span>
when object goes under acceleration
c).its velocity always increases
<h3><u>Additional</u><u> </u><u>information</u><u>:</u><u>-</u></h3>
★ Acceleration: Rate of increase in velocity.
★ Velocity: Distance travelled by a body per unit time in given direction is called velocity .
I say that the answere would be B
<h3>A boy who is riding his bicycle, moves with an initial velocity of 5 m/s. Ten second later, he is moving at 15 m/s. What is his acceleration?</h3>
<h3>Initial Velocity (<em>u</em>) - 5 m/s</h3><h3>Final Velocity (<em>v</em>) - 15 m/s</h3><h3>Time (<em>t</em>) - 10 sec</h3>
<h3>If the velocity of an object changes from an initial value <em>u </em>to the final value <em>v </em>in time <em>t,</em><em> </em>the acceleration <em>a</em> is, </h3><h3>
</h3><h3>
</h3>
<h3>His acceleration is </h3><h3>
</h3><h3 /><h3 />