9514 1404 393
Answer:
5) 729, an=3^n, a[1]=3; a[n]=3·a[n-1]
6) 1792, an=7(4^(n-1)), a[1]=7; a[n]=4·a[n-1]
Step-by-step explanation:
The next term of a geometric sequence is the last term multiplied by the common ratio. (This is the basis of the recursive formula.)
The Explicit Rule is ...

for first term a₁ and common ratio r.
The Recursive Rule is ...
a[1] = a₁
a[n] = r·a[n-1]
__
5. First term is a₁ = 3; common ratio is r = 9/3 = 3.
Next term: 243×3 = 729
Explicit rule: an = 3·3^(n-1) = 3^n
Recursive rule: a[1] = 3; a[n] = 3·a[n-1]
__
6. First term is a₁ = 7; common ratio is r = 28/7 = 4.
Next term: 448×4 = 1792
Explicit rule: an = 7·4^(n-1)
Recursive rule: a[1] = 7; a[n] = 4·a[n-1]
The answer would be 0.8, because 800 hundreds go into 8 thousandths, but there is only 80 hundreds, so the answer is 0.8 thousandths.
Answer: 0.8 thousandths
PLZ MARK MINE THE BRAINLIEST ANSWER!!!
Option A: The sum for the infinite geometric series does not exist
Explanation:
The given series is 
We need to determine the sum for the infinite geometric series.
<u>Common ratio:</u>
The common difference for the given infinite series is given by

Thus, the common difference is 
<u>Sum of the infinite series:</u>
The sum of the infinite series can be determined using the formula,
where 
Since, the value of r is 3 and the value of r does not lie in the limit 
Hence, the sum for the given infinite geometric series does not exist.
Therefore, Option A is the correct answer.
Let
A------> <span>(5√2,2√3)
B------> </span><span>(√2,2√3)
we know that
</span>the abscissa<span> and the ordinate are respectively the first and second coordinate of a point in a coordinate system</span>
the abscissa is the coordinate x<span>
step 1
find the midpoint
ABx------> midpoint AB in the coordinate x
</span>ABy------> midpoint AB in the coordinate y
<span>
ABx=[5</span>√2+√2]/2------> 6√2/2-----> 3√2
ABy=[2√3+2√3]/2------> 4√3/2-----> 2√3
the midpoint AB is (3√2,2√3)
the answer isthe abscissa of the midpoint of the line segment is 3√2
see the attached figure
Aww... I have a dog named Tilly, *Ahem* It would take 36 seconds. Hope this helpz...