Large polymers are created during dehydration synthesis, which are typically referred to as biological macromolecules. These compounds include proteins, lipids, carbohydrates, and nucleic acids.
As a result, the dehydration reaction is responsible for the formation of protein, lipid, and nucleic acids.
1. Protein structure
- Amino acid polymers form proteins. There are four different types of proteins, based on structure.
- The amino acid sequence of a protein is represented by its primary structure, which is a linear chain.
- The backbone (main chain) atoms of a polypeptide are arranged locally in space to form the protein's secondary structure.
- A polypeptide chain's whole three-dimensional structure is referred to as a protein's tertiary structure.
- The protein's quaternary structure, which is a three-dimensional arrangement of the subunits of a multi-subunit protein.
2. Lipid structure is a crucial element of the cell membrane. The structure is mostly composed of a glycerol backbone, two hydrophobic fatty acid tails, and a hydrophilic phosphate group.
3. Nucleic acids' structure: Nucleotide polymers make up nucleic acids. Each nucleotide is made up of an aromatic base with a N-atom connected to a pentose sugar with five carbons, which is then joined to a phosphate group.
To know more about biological macromolecules visit:
brainly.com/question/2141678
#SPJ4
Answer:
50% will have long hair!
Explanation:
When you cross between Hh and hh, two out of four are Hh, which is long hair, and two are hh, which is short hair.
Answer:
I'm pretty sure the answer is a Tundra.
Explanation:
It's the only biome that has snow out of every other answer choice. Snowy places are naturally cooler than humid ones.
Answer:
the correct answer is B it is changeable
Explanation:
Science knowledge may change due to the development of new technics for observing investigations also through new ways of thinking or framing the questions asked.
Telomerase is found in fetal tissues, adult germ cells, and also tumor cells. Telomerase activity is regulated during development and has a very low, almost undetectable activity in somatic (body) cells. Because these somatic cells do not regularly use telomerase, they age.