1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
10

How do you solve this? Thank you

Mathematics
1 answer:
V125BC [204]3 years ago
6 0
2)

a)

\bf a^{\frac{{ n}}{{ m}}} \implies  \sqrt[{ m}]{a^{ n}} \qquad \qquad
\sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\
-------------------------------\\\\
(4x^5\cdot x^{\frac{1}{3}})+(2x^4\cdot x^{\frac{1}{3}})-(7x^3\cdot x^{\frac{1}{3}})+(3x^2\cdot x^{\frac{1}{3}})\\\\+(9x^1\cdot x^{\frac{1}{3}})-(1\cdot x^{\frac{1}{3}})
\\\\\\
4x^{5+\frac{1}{3}}+2x^{4+\frac{1}{3}}-7x^{3+\frac{1}{3}}+9x^{1+\frac{1}{3}}-x^{\frac{1}{3}}

\bf 4x^{\frac{16}{3}}+2x^{\frac{13}{3}}-7x^{\frac{10}{3}}+9x^{\frac{4}{3}}-x^{\frac{1}{3}}
\\\\\\
4\sqrt[3]{x^{16}}+2\sqrt[3]{x^{13}}-7\sqrt[3]{x^{10}}+9\sqrt[3]{x^4}-\sqrt[3]{x}

b)

\bf \cfrac{4x^5+2x^4-7x^3+3x^2+9x-1}{x^{\frac{1}{3}}}\impliedby \textit{distributing the denominator}
\\\\\\
\cfrac{4x^5}{x^{\frac{1}{3}}}+\cfrac{2x^4}{x^{\frac{1}{3}}}-\cfrac{7x^3}{x^{\frac{1}{3}}}+\cfrac{3x^2}{x^{\frac{1}{3}}}+\cfrac{9x}{x^{\frac{1}{3}}}-\cfrac{1}{x^{\frac{1}{3}}}
\\\\\\
(4x^5\cdot x^{-\frac{1}{3}})+(2x^4\cdot x^{-\frac{1}{3}})-(7x^3\cdot x^{-\frac{1}{3}})+(3x^2\cdot x^{-\frac{1}{3}})\\\\+(9x^1\cdot x^{-\frac{1}{3}})-(1\cdot x^{-\frac{1}{3}})

\bf 4x^{5-\frac{1}{3}}+2x^{4-\frac{1}{3}}-7x^{3-\frac{1}{3}}+9x^{1-\frac{1}{3}}-x^{-\frac{1}{3}}
\\\\\\
4x^{\frac{14}{3}}+2x^{\frac{11}{3}}-7x^{\frac{8}{3}}+9x^{\frac{2}{3}}-x^{-\frac{1}{3}}
\\\\\\
4\sqrt[3]{x^{14}}+2\sqrt[3]{x^{11}}-7\sqrt[3]{x^{8}}+9\sqrt[3]{x^{2}}-\frac{1}{\sqrt[3]{x}}



3)

\bf \begin{cases}
f(x)=\sqrt{x}-5x\implies &f(x)x^{\frac{1}{2}}-5x\\\\
g(x)=5x^2-2x+\sqrt[5]{x}\implies &g(x)=5x^2-2x+x^{\frac{1}{5}}
\end{cases}
\\\\\\
\textit{let's multiply the terms from f(x) by each term in g(x)}
\\\\\\
x^{\frac{1}{2}}(5x^2-2x+x^{\frac{1}{5}})\implies x^{\frac{1}{2}}5x^2-x^{\frac{1}{2}}2x+x^{\frac{1}{2}}x^{\frac{1}{5}}

\bf 5x^{\frac{1}{2}+2}-2x^{\frac{1}{2}+1}+x^{\frac{1}{2}+\frac{1}{5}}\implies \boxed{5x^{\frac{5}{2}}-2x^{\frac{3}{2}}+x^{\frac{7}{10}}}
\\\\\\
-5x(5x^2-2x+x^{\frac{1}{5}})\implies -5x5x^2-5x2x+5xx^{\frac{1}{5}}
\\\\\\
-25x^3+10x^2-5x^{1+\frac{1}{5}}\implies \boxed{-25x^3+10x^2-5x^{\frac{6}{5}}}

\bf 5\sqrt{x^5}-2\sqrt{x^3}+\sqrt[10]{x^7}-25x^3+10x^2-5\sqrt[5]{x^6}
You might be interested in
Is it positive negative or none
Sholpan [36]

Answer: none

Step-by-step explanation:none of the x and y a axis

3 0
3 years ago
Read 2 more answers
A large storage tank, open to the atmosphere at the top and filled with water, develops a small hole in its side at a point 10.4
vlabodo [156]

Answer:

Therefore the diameter of the hole is 1.94 \times 10^{-3} m.

Step-by-step explanation:

Bernoulli's equation,

P_1+\frac12 \rho v^2_1+\rho g h_1= P_2+\frac12 \rho v^2_2+\rho g h_2

P₁ = P₂= atmospheric presser

\rho= density

\frac12 \rho v^2_1+\rho g h_1= \frac12 \rho v^2_2+\rho g h_2             [since P₁ = P₂]

\Rightarrow\rho (\frac12 v^2_1+ g h_1)= \rho(\frac12 v^2_2+ g h_2)

\Rightarrow\frac12 v^2_1+ g h_1= \frac12 v^2_2+ g h_2

\Rightarrow\frac12 v^2_2-\frac12 v^2_1=g h_1- g h_2

\Rightarrow v^2_2- v^2_1=2g h                                [h_1-h_2=h]

Here   v_1\approx 0

\Rightarrow v^2_2=2g h

\therefore v_2=\sqrt {2gh

Here g= 9.8 m/s² , h = 10.4 m

The velocity of water that leaves from the hole v_2 = \sqrt {2\times 9.8\times 10.4} m/s

                                                                                  =14.28 m/s.

Given, the rate of flow from the leak is 2.53\times 10^{-3} m^3/min

                                                               =\frac{2.53\times 10^{-3}}{60}  m^3/s

Let the diameter of the hole be d.

Then the cross section area of the hole is =\pi (\frac d2)^2

We know that,

The rate of flow = Cross section area × speed

\Rightarrow \frac{2.53\times 10^{-3}}{60} =\pi (\frac d2)^2\times 14.28

\Rightarrow (\frac d2)^2=\frac{2.53\times 10^{-3}}{60\times 14.28\times \pi}

\Rightarrow d= 1.94 \times 10^{-3}

Therefore the diameter of the hole is 1.94 \times 10^{-3} m.

4 0
3 years ago
Factor the expression 20x^2+22x-12
hjlf

Answer:

2(5x-2) (2x+3)

Step-by-step explanation: You could take a two out of the equation and then factor.

6 0
3 years ago
Nancy mistakenly measured the temperature of a heated liquid to be 48°C. The actual
Alenkinab [10]

Answer:

4.17% (nearest hundredth)

Step-by-step explanation:

percent change = [ (difference between initial value and final value) ÷ initial value] x 100

⇒ percent change = [ (50 - 48) ÷ 48 ] x 100 = 4.17% (nearest hundredth)

7 0
3 years ago
Oreana's 150 g bag of trail mix is x% raisins. Brandon's 250 g bag of trail mix is y% raisins. They combine the two mixes togeth
Gre4nikov [31]

Answer:

x+y/ 100 = 450

Step-by-step explanation:

450 = x% + y%

450 = x/100 + y/100

450 = x+y/100

7 0
3 years ago
Other questions:
  • I need help with B!
    10·1 answer
  • Which expression represents the sum of (2x - 5y) and (x + y)?
    12·1 answer
  • Evaluate the function at f(-4)
    9·1 answer
  • Li Na is going to plant 63 tomato plants and 81 rhubarb plants.
    6·1 answer
  • What is 1/2-1/8+1/8
    6·1 answer
  • WILL MARK BRAINLIEST!!!
    13·1 answer
  • When a barrel is 1/5 full it holds 16litre how many litres will it hold when 1/2 full ?
    9·1 answer
  • Mr. Smith is paid $9.50 per hour for fixing watches. write an expression for the amount of money Mr.smith earns in h hours.
    14·2 answers
  • Wesley and Lincoln went fishing
    15·1 answer
  • __+ (-4) = -1 what is the missing number
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!